Symmetry in the Coplanarity Condition

We can rewrite the triple product without difficulty using

$$
\begin{equation*}
t=\dot{\mathrm{r}} \mathrm{~d} \cdot \mathrm{q} \dot{\mathrm{q}}=\dot{\mathrm{r}} \cdot \dot{\mathrm{q}} \mathrm{\ell} \mathrm{~d}^{*}=\dot{\mathrm{q}}^{*} \dot{\mathrm{r}} \cdot \dot{\ell} \mathrm{~d}^{*} . \tag{1}
\end{equation*}
$$

Noting that $\grave{\ell}^{*}=-\check{\ell}$ and $\dot{\mathrm{r}}^{*}=-\stackrel{\mathrm{r}}{ }$, since $\stackrel{\circ}{\mathrm{r}}$ and ℓ are quaternions with zero scalar parts, we first obtain

$$
\begin{equation*}
t=\mathrm{r} \mathrm{q} \mathrm{q} \cdot \mathrm{~d} \mathrm{\ell} \ell \tag{2}
\end{equation*}
$$

We then find by expanding the dot-product for t in terms of the scalar and vector components of $\dot{\mathrm{q}}=(\boldsymbol{q}, \mathbf{q})$ and $\dot{\mathrm{d}}=(d, \mathbf{d})$:

$$
\begin{equation*}
(\mathbf{d} \cdot \mathbf{r})(\mathbf{q} \cdot \boldsymbol{\ell})+(\mathbf{q} \cdot \mathbf{r})(\mathbf{d} \cdot \boldsymbol{\ell})+(d q-\mathbf{d} \cdot \mathbf{q})(\boldsymbol{\ell} \cdot \mathbf{r})+d[\mathbf{r} \mathbf{q} \boldsymbol{\ell}]+q[\mathbf{r} \mathbf{d} \boldsymbol{\ell}] . \tag{3}
\end{equation*}
$$

While

$$
\begin{equation*}
\dot{\mathrm{s}}=\sum_{i=1}^{n} w_{i} e_{i}\left(\mathrm{r}_{i} \mathrm{~d} \grave{\ell}_{i}^{*}\right) \quad \text { and } \quad \dot{\mathrm{t}}=\sum_{i=1}^{n} w_{i} e_{i}\left(\mathrm{r}_{i}^{*} \dot{\mathrm{q}} \dot{\ell}_{i}\right) . \tag{4}
\end{equation*}
$$

We also still have the three equations

$$
\begin{equation*}
\dot{\mathrm{q}} \cdot \delta \dot{\mathrm{q}}=0, \quad \dot{\mathrm{~d}} \cdot \delta \mathrm{~d}=0, \quad \text { and } \quad \dot{\mathrm{q}} \cdot \delta \mathrm{~d}+\dot{\mathrm{d}} \cdot \delta \dot{\mathrm{q}}=0, \tag{5}
\end{equation*}
$$

all of which we can shuffled around into matrix form

$$
\left(\begin{array}{ccccc}
A & B & \dot{\mathrm{q}} & 0 & \mathrm{~d} \tag{6}\\
B^{T} & C & 0 & \dot{\mathrm{~d}} & \dot{\mathrm{q}} \\
\dot{\mathrm{q}}^{T} & 0^{T} & 0 & 0 & 0 \\
0^{T} & \mathfrak{d}^{T} & 0 & 0 & 0 \\
\mathrm{~d}^{T} & \mathrm{q}^{T} & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\delta \mathrm{d} \\
\delta \dot{\mathrm{q}} \\
\lambda \\
\mu \\
v
\end{array}\right)=-\left(\begin{array}{c}
\mathrm{s} \\
\mathrm{t} \\
0 \\
0 \\
0
\end{array}\right),
$$

Note that the upper left 8×8 sub-matrix is the weighted sum of flattened dyadic products (as first shown by Žarí, Bārŭk, and Łolaż)

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i} \vec{c}_{i} \vec{c}_{i}^{T} \tag{7}
\end{equation*}
$$

where the eight component vector \vec{c}_{i} is given by

We conclude that the number of solutions is equal to the number of ways of partitioning the set of variables, namely

$$
\begin{equation*}
\binom{n+m-2}{n-1}=\binom{n+m-2}{m-1}=\frac{(n+m-2)!}{(n-1)!(m-1)!} \tag{9}
\end{equation*}
$$

To implement the numerical solution, take a small step $\delta \lambda$ in λ and solve for the increment $\delta \mathbf{x}$ in

$$
\begin{equation*}
\frac{d \mathbf{h}}{d \lambda} \delta \lambda+\frac{d \mathbf{h}}{d \mathbf{x}} \delta \mathbf{x}=0 \tag{10}
\end{equation*}
$$

where $J=(d \mathbf{h} / d \mathbf{x})$ is the Jacobian of \mathbf{h} with respect to \mathbf{x}.

