
Task 3: Technical studies Task 3: Technical studies

MFG discussion document Task 3: Technical studies 1

Control glyphs for arrows

Alan Jeffrey

1 Introduction

This document looks at suitable control glyphs for
implementing math arrows. In particular, we look
at ways that extensible and negated arrows can be
produced.

2 Vertical arrows

Vertical arrows can be accessed using the growing
delimiter mechanism. The non-negated arrows can
be built with a ‘top’, ‘bot’ and ‘rep’ section, and the
negated arrows can be built with a ‘top’, ‘bot’, ‘med’
and ‘rep’ section, where the ‘med’ section includes
the negation.

3 Horizontal arrows

Horizontal arrows can be produced using the ad-
vanced ligature mechanism introduced in TEX 3. An
arrow is defined by:

arrow ::= leftarrow rightarrow extarrow∗

A leftarrow is the leftmost part of an arrow, that is
the tail of a rightwards-pointing arrow or the head of
a leftwards-pointing arrow. For example, the leftarrow

of ‘7→’ is 〈leftarrowmapsto〉 and the leftarrow of ‘↔’
is 〈leftarowhead〉. A leftarrow is one of:

• 〈leftarrownone〉 There is nothing on the left of
the arrow, for example ‘→’ or ‘⇒’.

• 〈leftarrowhead〉 There is a single arrowhead on
the left of this arrow, for example ‘↔’ or ‘←↩’.

• 〈leftarrowdblhead〉 There is a double arrowhead
on the left of this arrow, for example ‘⇐’ or
‘⇔’.

• 〈leftarrowtrplhead〉 There is a triple arrowhead
on the left of this arrow, for example ‘W’ or
‘WV’.

• 〈leftarrowmapsto〉 There is a flat bar on the left
of this arrow, for example ‘7→’.

• 〈leftarrowhook〉 There is a hook on the left of
this arrow, for example ‘↪→’.

• 〈leftarrowharpoonup〉 There is an upwards har-
poon on the left of this arrow, for example ‘↼’.

• 〈leftarrowharpoondown〉 There is a downwards
harpoon on the left of this arrow, for example
‘↽’.

• 〈leftarrowharpoondblup〉 There is an upwards har-
poon on the left of this double arrow, for exam-
ple ‘�’.

• 〈leftarrowharpoondbldown〉 There is a downwards
harpoon on the left of this double arrow, for ex-
ample ‘
’.

• 〈leftarrowheaddbl〉 There are two arrowheads on
the left of this single arrow, for example ‘�’.

• 〈leftarrowdblheaddbl〉 There are two arrowheads
on the left of this double arrow, for example
‘⇔’.

• 〈leftarrowdblheadup〉 There is an arrowhead on
the top left of this double arrow, for example
‘�’.

• 〈leftarrowdblheaddown〉 There is an arrowhead
on the bottom left of this double arrow, for ex-
ample ‘�’.

• 〈leftarrowrighthead〉 There is a rightwards ar-
rowhead on the left of this arrow, for example
‘�’.

• 〈leftarrowcurlyhead〉 There is an arrowhead with
a curly line leading out of it on the left of this
arrow, for example ‘!’

• 〈leftarrowturn〉 There is a turn on the left of
this arrow, for example ‘#’.

• 〈leftarrowcirc〉 There is an open circle on the
left of this arrow, for example ‘◦−’.

• 〈leftarrowbullet〉 There is a closed circle on the
left of this arrow, for example ‘•−’.

• 〈leftarrowtriangle〉 There is an open triangle on
the left of this arrow, for example ‘/−’.

A rightarrow has the same possibilities, visually mir-
rored around the vertical axis, and with ‘left’ swapped
with ‘right’. For example:

→ is 〈leftarrownone〉〈rightarrowhead〉.

↔ is 〈leftarrowhead〉〈rightarrowhead〉.

•" is 〈leftarrowbullet〉〈rightarrowturn〉.

These arrows can be extended using extarrow glyphs,
which say how many extension pieces to put into the
arrow. An extarrow is one of:

• 〈extarrowone〉 which extends the arrow.

• 〈extarrowneg〉 which negates the arrow.

• 〈extarrowoneneg〉 which extends the arrow and
negates it.

If there is a negation, it should come in the middle
of the list of extensions, for example:

6⇔ is 〈leftarrowdblhead〉〈rightarrowdblhead〉〈extarrowneg〉.

⇐6⇒ is 〈leftarrowdblhead〉〈rightarrowdblhead〉〈extarrowoneneg〉.

⇐6=⇒ is 〈leftarrowdblhead〉〈rightarrowdblhead〉〈extarrowone〉
〈extarrowneg〉〈extarrowone〉.

Note that not every font will be able to produce
every combination of leftarrow and rightarrow, for
example some pi fonts do not allow 7→ to be ex-
tended. In fact, some of the combinations make no
sense, such as 〈leftarrowhook〉〈rightarrowdblhead〉.



Task 3: Technical studies Task 3: Technical studies

2 Task 3: Technical studies MFG discussion document

Such nonexistent arrows should be set with an eye-
catching error glyph such as ‘ ’ and if possible should
put a ‘Warning:’ special into the dvi file.

We should not specify anything about the ap-
pearance of these control glyphs, which should give
font implementors enough freedom to convert most
pi fonts into this encoding. One possible implemen-
tation of these control glyphs is by ligaturing and
kerning, for example by using the ligatures:

〈leftarrowhead〉〈rightarrowhead〉

→ 〈leftrightarrow〉

〈leftrightarrow〉〈extarrowone〉

→ 〈leftrightarrow〉〈rightarrow〉

〈leftrightarrow〉〈rightarrow〉

→ 〈leftarrow〉〈rightarrow〉

〈rightarrow〉〈extarrowone〉

→ 〈rightarrow〉〈rightarrow〉

〈rightarrow〉〈rightarrow〉

→ 〈arrowext〉〈rightarrow〉

and appropriate kerns for:

〈leftarrow〉〈rightarrow〉
〈arrowext〉〈rightarrow〉

then the ‘arrow-building kit’ will build any length of
‘↔’ that is required, for example:

\def\longrightarrow{\mathrel

{\leftarrowheadchar

\rightarrowheadchar

\arrowextonechar}}

Note that as long as the user does not use the con-
trol glyphs of type mathord in their document, the
ligtable will never be used (rule 14 of Appendix G)
and so input such as:

{\rightarrow} \rightarrow

will not unexpectedly ligature to something else.
There are a few features missing from these control
glyphs:

• The simpler arrows should be in fixed slots,
so that they can be accessed quickly through
a \mathchardef. We should ensure that this
\mathchardef is always of type mathrel, oth-
erwise strange ligaturing might happen.

• There is currently no syntax for accessing the
negation glyphs on their own, which are neces-
sary for building negated arrow leaders similar
to \arrowfill.

There are eight other ‘arrowlike’ glyphs that are de-
fined as special glyphs, and do not fit into the ‘arrow-
building kit’. These are ‘�’, ‘	’, ‘�’, ‘�’, ‘K’, ‘L’, ‘~x’
and ‘↔−’. These glyphs should be accessed directly.

All that these control glyphs are doing is sim-
ulating the extensible vertical glyphs such as the
growing delimiters. If there were a horizontal equiv-
alent of growing delimiters then no such trickery
would be required!

4 Diagonal arrows

There is no easy way to build diagonal extended
arrows. All the font can do is provide the building
blocks, and leave TEX macros to build the arrows.
The font standard should specify how each of the
diagonal extended arrows is to be constructed, and
any font dimensions that will be necessary for the
task.

5 Conclusions

Setting extensible vertical arrows with TEX is sim-
ple, since the growing delimiter mechanism already
supports it. Setting growing horizontal arrows is
trickier, and requires clever ligtable programming,
but it can still be done inside the font, and with-
out use of TEX macros. Setting diagonal arrows can
only be done by brute force and TEX programming.

� Alan Jeffrey

University of Sussex

alanje@cogs.susx.ac.uk


