
preliminary draft, July 10, 2020 12:43 preliminary draft, July 10, 2020 12:43

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 10, 2020 12:43 ? 1

The HINT Project:
Status and Open Questions

Martin Ruckert and Gudrun Socher

Abstract
The HINT file format is intended as a replacement of
the DVI or PDF file format for on-screen reading of
TEX output. This presentation gives an overview of
the current state of the project and solicits answers
to open questions that might influence further de-
velopment.

1 Current State
1.1 Version 1.0
Version 1.0 of the HINT file format [?] was published
in August 2019 and presented [?] at the TUG meet-
ing 2019. In March 2020, the first version of HiTEX
and two HINT viewers, one for Windows and one
for Android, went online on http://hint.userweb.
mwn.de. The performance of these programs was
better than expected in time as well as in space.

HiTEX runs as fast as other implementations of
TEX, after all, it skips the breaking of paragraphs
into lines and the building of pages. The size of the
HINT files it produces are similar to the size of PDF
files produced from the same source. Even smaller
files can be expected in the future because the cur-
rent implementation of HiTEX does not use the more
compact “text format” defined as part of the HINT

specification.
The first viewer for version 1.0 HINT files be-

came operational in Fall 2019. It runs under the
Windows operating system using the WIN32 API.
While it is not optimized for speed, its performance
is still good and the rendering time does not depend
on the file size nor on the position of the page inside
a large file. Large pages on big screens at tiny font
sizes are shown with a small, noticeable delay, but
average pages — comparable to letter size paper at
10pt — pop up at once.

When we started to build the first viewer for
the Android operating system, we were aware of the
limited computational resources available on mobile
devices and curious how the user experience would
turn out. We decided to use Open EGL to dele-
gate the rendering of glyphs to the GPU and were
positively surprised that the new implementation —
even on low-cost mobile phones — clearly outper-
formed the Windows implementation running on a
standard PC. It turned out that the computational
demands of the TEX based backend are very low
and fast rendering depends almost exclusively on the
ability to accelerate the transfer of bitmaps to the

screen. As a side effect, a group of (lazy) students,
charged with implementing various features of the
user interface as part of a comutergraphics course,
successfully used the full power of the TEX backend
to implement a two finger zoom gesture: rerender-
ing the complete page with every movement of the
fingers including line breaking and page building.
Just to demonstrate the backend-performance this
unusual way of zooming is left as an option — named
“TEX Zoom” — in the Android implementation.

Both viewers, for Windows and for Android,
rest on a shared backend, written as a literate pro-
gram in cweb (3475 lines of change files for TEX plus
6109 lines of cweb code).

The Windows viewer is written in C (1056 lines
plus 176 lines for print support); its user interface
is mouse- and keyboard-based. The Android viewer
is written in C++ (947 lines) with some embedded
Open EGL and Java (1201 lines); its user interface
is touch-screen based. In both cases, additional li-
braries are used for decompression and rendering of
fonts and images.

1.2 Version 1.1
Since the publication in March 2020, new features
were added to the software and we expect Version
1.1 to be ready for publication in fall 2020. Unfor-
tunately the Version 1.1 HINT file format is not com-
patible with the 1.0 Version. But the HINT project is
a research project and it seemed reasonable to make
these changes.

First, a new tag was introduced to indicate the
current language. Furthermore, font descriptions
now indicate the encoding. This information was
not available in Version 1.0 because it is not needed
to render HINT files on screen. Knowing language
and encoding is, however, very important for lan-
guage translation or for text to speech conversion to
make texts accessible to the visually-impaired.

Second, HiTEX was extended by special syntax
to define page templates and the viewer’s backend
was extended to use page templates. So now it is
possible to display footnotes and floating insertions.
In the process of implementing these features, the
representation of insertions and page templates in
the HINT file format was slightly redesigned.

The new Windows viewer now has a “Print”
feature. Taking a TEX file that is designed for, let’s
say, letter paper, producing a HINT file from it, and
printing it on letter paper should give exactly the
same result as producing a PDF file and printing



preliminary draft, July 10, 2020 12:43 preliminary draft, July 10, 2020 12:43

? 2 preliminary draft, July 10, 2020 12:43 TUGboat, Volume 0 (9999), No. 0

the PDF. The “Print” feature is not (yet) avail-
able on Android, because the interface between An-
droid’s print manager and Open EGL turned out to
be challenging.

The LATEX support of HiTEX is still incomplete
because HiTEX is still based on Knuth’s TEX dis-
tribution and the extensions of ε-TEX are not yet
part of it. HiTEX’s memory model is still based on
Knuth’s 16 bit pointers. We hope, however, that in
the near future, HiTEX and the HINT viewers can
become a standard part of the TEXlive distribution
and as easy to use as any other TEX engine.

2 Open Questions
Now to the questions. Two basic goals of the HINT

project are:
1. HINT is a TEX independent format. It should

lend itself as an output format to all kinds of
document processors.

2. HiTEX is source-compatible to other common
versions of TEX like pdfTEX.

As a consequence, it is important to use common
standards both inside and outside the TEX universe.

2.1 Language Information and Character
Encoding

To represent language information, the world wide
web has set universally accepted standards. The
Internet Engineering Task Force IETF has defined
in BCP 47 [?] tags for identifying languages: short
strings like “en” for English or “de” for Deutsch,
and longer ones like “sl-IT-nedis”, for the specific
variant of the Nadiza dialect of Slovenian that is
spoken in Italy. A HINT file should contain these
language tags to enable tools, for example a text to
speech converter, to process a HINT file. The open
question is: How can I obtain this information from
a TEX source file?

The babel package is the de facto standard han-
dling language selection in TEX. It provides a mech-
anism to map the tags from BCP 47 to TEX’s lan-
guage numbers and back again. Adding these tags
to an output file is, however, less simple: When
TEX’s whatsit nodes with subtype language arrive
at the page builder, only the language number is
left. I think all TEX engines that want to embed
language information in their output would benefit
from a simple standard mechanism (like adding a
TEX string number pointing to the BCP 47 tag to
the language whatsit nodes).

The situation with character encodings is sim-
ilar. In a HINT file, text is represented as a se-
quence of numbers called character codes. HINT files
use the UTF-8 character encoding scheme (CES) to

map these numbers to their representation as byte
sequences. For example the number “0xE4” is en-
coded as the byte sequence “0xC3 0xA4”. The same
number 0xE4 now can represent different characters
depending on the coded character set (CCS). For
example in the common ISO-8859-1 (Latin 1) en-
coding the number 0xE4 is the umlaut “ä” whereas
in the ISO-8859-7 (Latin/Greek) it is the Greek let-
ter “δ” and in the EBCDIC encoding, used on IBM
mainframes, it is the upper case letter “U”.

The character encoding is irrelevant for render-
ing a HINT file as long as the character codes in the
HINT content section are consistent with the char-
acter codes used in the font file, but the character
encoding is necessary for all programs that need to
“understand” the content of the HINT file. For ex-
ample programs that want to translate a HINT doc-
ument to a different language or for text-to-speech
conversion.

The Internet Engineering Task Force IETF has
established a character set registry [?] that defines
an enumeration of all registered coded character sets.
The coded character set numbers are in the range
1–2999. This encoding number is required in a HINT

file as part of a font definition. Is there a method to
obtain this number in a standard way when process-
ing a TEX source file? Again, all TEX engines that
want to produce accessible output will need that in-
formation.

2.2 Images
This section is only about still images, not animated
images. Still there are many different file formats to
store images, but most of them exist only for his-
toric reasons, marketing considerations, or patent
rights. If you look at the WWW, only a few image
file formats are around: JPEG for photographs; PNG
for clip-art, button faces, and other simple graphical
objects; and SVG for resolution-independent vector
graphics. Image formats that are commonly used
with TEX, like EPS or PDF, are not found among
them. Further, TEX engines and TEX viewers sup-
port different sets of image formats. There are very
good programs available to convert basically any im-
age format into any other image format, and there-
fore it seems reasonable to define one basic set of
image formats that are supported by any TEX en-
gine and any TEX viewer. I assume that JPEG and
PNG are most likely part of such a set. The open
question is: What kind of image format should be
used for vector graphics?

From the different versions of SVG, probable
only compressed SVG Tiny is a candidate for the



preliminary draft, July 10, 2020 12:43 preliminary draft, July 10, 2020 12:43

TUGboat, Volume 0 (9999), No. 0 preliminary draft, July 10, 2020 12:43 ? 3

HINT file format because the HINT file format is spe-
cifically designed for mobile devices, like eBook read-
ers, with severely limited capabilities. But even
for SVG Tiny, it seems there is no simple, high-
performance library that would do the job. Of course
there are interpreters for SVG, EPS, or PDF graph-
ics, but unless you need such an interpreter anyway
for viewing your TEX output, these interpreters add
considerably to the footprint of your TEX viewer.

The only extra interpreter that is (planed to
be) part of the HINT viewer is the FreeType library.
It is needed for PostScript Type 1 fonts. Therefore
the cheapest alternative would be a program that
converts vector graphics to glyphs in such a font. Is
this a viable idea?

Finally, someone might be able to answer this
question easily, but I have not investigated it yet:
What is the minimal set of primitives I have to im-
plement in HiTEX to make the typical LATEX graph-
ics packages happy?

2.3 Links
For an output format like HINT that supports on-
demand page building, the usual method of books —
and TEX — to implement references, namely page
numbers, does not work. Therefore links are neces-
sary to navigate large documents. Generating links
is already common practice when TEX’s output is a
PDF file. But note, that for example the TUGboat
sample article template starts with
\usepackage{ifpdf}
\ifpdf
\usepackage[...]{hyperref}
\else
\usepackage{url}
\fi
A clear indication that there is no common set of
primitives to implement links. Is the only solution
another ifhint package?

Many of the new primitives of PDFTEX write
their arguments directly to the PDF output file. Is
it not better to define a new, standardized subtype
of whatsit nodes for representing links, together with
a common set of primitives to generate these nodes,
and postpone the generation of output format de-
pendent code?

2.4 The Viewer API
Unlike previous questions, this question is mainly,
but not exclusively, a HINT specific question. When
viewing TEX output, be it a HINT file, a PDF file,
or some other format used for example in a WYSI-
WYG editor, the viewer must support interactions
between user and document. In simple cases this

is just paging forward or backwards, and in more
sophisticated cases following a link or zooming. In
contrast to DVI or PDF output, the document repre-
sentation in a HINT file is more or less the represen-
tation that TEX uses internally for the document.
Therefore the question of how to interact with such
a document might be of interest for all programs
that interactively manipulate TEX documents.

The HINT project separates the document han-
dling from the graphical user interface (GUI). It
provides a generic backend program with a clear
API that should be flexible enough to support any
GUI frontend. Currently the following operations
are supported: opening and closing a document, set-
ting the size of the output area (true size and res-
olution), rendering the current page, obtaining the
top-left position of the current page, and moving to
a new page given the top-left or bottom-right posi-
tion.

Other operations are under consideration. For
example, consider that the user interface wants to
implement searching for words. Opening a window
and entering the search term is entirely the respon-
sibility of the GUI. The backend needs to supply a
function to find the position of the next occurrence
of the search term. But just displaying a page that
starts or ends with the given position is probably
not what the user wants. A new function is needed
that moves to a new page that contains the given
position somewhere in the middle. Another func-
tion should probably be available to test whether
the new position is already on the current page.

To interact with images, floating insertions, and
links might require many more additional functions.
Since there is no point in reinventing the wheel, we
ask: Is there an established set of functions or pat-
tern to accomplish such tasks which is as simple as
possible and as powerful as necessary to support the
user interfaces that — hopefully — will be written in
the future?

2.5 Change Files as Literate Programs
Large parts of the HINT project are written as liter-
ate programs using cweb. The special situation with
HINT is, however, that important parts of the code
are taken directly from Knuth’s TEX implementa-
tion, written as a WEB itself, but with many, many
small modifications. For example, TEX’s dimensions
become extended dimensions in HINT. An extended
dimension is a linear function of \hsize and \vsize
and hence every occurrence of cur_val needs to be
supplemented by an occurrence of cur_hfactor and
cur_vfactor. Similar supplements are needed for
the table of equivalents or the save stack.



preliminary draft, July 10, 2020 12:43 preliminary draft, July 10, 2020 12:43

? 4 preliminary draft, July 10, 2020 12:43 TUGboat, Volume 0 (9999), No. 0

The traditional method for such modifications
are change files or slightly less traditional, but more
convenient, patch files. Large change files or patch
files tend to be dull reading material up to the point
where they must be considered unreadable. Two
main problems affect the readability of change files:
the the lack of context and the necessity to order
changes by their appearance in the original. The
situation can be alleviated somewhat by using the
tie program and organizing the changes into collec-
tions of related changes. For the HINT documenta-
tion, from these change files reasonable TEX output
is generated. But overall, the result is still less than
satisfactory, and this raises the question: Is there a
good way to present changes to a literate program
as a literate program?

3 Conclusion
Considering the scale of the project and the com-
plexity of the involved software, the HINT project
has moved forward with surprising speed. While
there are still many open questions and missing pieces,
the available HINT prototypes are already usable for
small projects and provide a testbed to explore the
advantages and the challenges of on-demand paging
with TEX.

Version 1.1 will provide a more stable basis and
offer enough flexibility to make HINT files a viable
alternative to the DVI or PDF format for on-screen
reading of TEX output. In the long run, however, a
new document format will only survive if it is either
widely used or if its infrastructure is sufficiently su-
perior to existing formats. Neither is currently the
case. Therefore the HINT project is still looking for
partners in the industry that have the will and the
necessary resources to turn the HINT project from a
research effort into a product.

⋄ Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
martin.ruckert@hm.edu

⋄ Gudrun Socher
Hochschule München
Lothstrasse 64
80336 München
Germany
gudrun.socher@hm.edu


