
Hans Hagen

Building paragraphs

Hans Hagen
PRAGMA ADE, Ridderstraat 27, 8061GH Hasselt NL
pragma@wxs.nl

Abstract
In this article I will summarize some experiences with converting the TEX par builder to Lua. In due time
there will be a plugin mechanism in ConTEXt, and this is a prelude to that.

1 Introduction

You enter the den of the Lion when you start mess-
ing around with the parbuilder. Actually, as TEX
does a pretty good job on breaking paragrphs into
lines I never really looked in the code that does
it all. However, the Oriental TEX project kind
of forced it upon me. In the chapter about font
goodies an optimizer is described that works per
line. This method is somewhat simular to expan-
sion level one support in the sense that it acts in-
dependent of the par builder: the split off (best)
lines are postprocessed. Where expansion involves
horizontal scaling, the goodies approach does with
(Arabic) words what the original HZ approach does
with glyphs.
It would be quite some challenge (at least for me)
to come up with solutions that looks at the whole
paragraph and as the per-line approach works quite
well, there is no real need for an alternative. How-
ever, in September 2008, when we were exploring
solutions for Arabic par building, Taco converted
the parbuilder into Lua code and stripped away all
code related to hyphenation, protrusion, expansion,
last line fitting, and some more. As we had enough
on our plate at that time, we never came to really
testing it. There was even less reason to explore
this route because in the Oriental TEX project we
decided to follow the “use advanced OpenType fea-
tures” route which in turn lead to the ‘replace words
in lines by narrower of wider variants' appeoach.
However, as the code was laying around and as we
want to explore futher I decided to pick up the par-
builder thread. In this chapter some experiences wil
be discussed. The following story is as much Taco's
as mine.

2 Cleaning up

In retrospect, we should not have been too surprised
that the first approximation was broken in many

places, and for good reason. The first version of
the code was a conversion of the C code that in turn
was a conversion from the original interwoven Pascal
code. That first conversion still looked quite C--ish
and carried interesting bit and pieces of C--macros,
C--like pointer tests, interesting magic constants and
more.
When I took the code and Lua-fied it nearly every
line was changed and it took Taco and me a bit of
reverse engineering to sort out all problems (thank
you Skype). Why was it not an easy task? There
are good reasons for this.

• The parbuilder (and related hpacking) code is
derived from traditional TEX and has bits
of pdfTEX, Aleph (Omega), and of course
LuaTEX.

• The advocated approach to extending TEX
has been to use change files which means that
a coder does not see the whole picture.

• Originally the code is programmed in the
literate way which means that the result-
ing functions are build stepwise. However,
the final functions can (and have) become
quite large. Because LuaTEX uses the woven
(merged) code indeed we have large functions.
Of course this relates to the fact that succe-
sive TEX engines have added functionality.
Eventually the source will be webbed again,
but in a more sequential way.

• This is normally no big deal, but the Aleph
(Omega) code has added a level of complexity
due to directional processing and additional
begin and end related boxes.

• Also the ε-TEX extension that deals with last
line fitting is interwoven and uses goto's for
the control flow. Fortunately the extensions
are driven by parameters which makes the
related code sections easy to recognize.

• The pdfTEX protrusion extension adds code
to glyph handling and discretionary handling.



100 TUGboat, Volume 99 (2010), No. 9

Building paragraphs

The expansion feature does that too and in
addition also messes around with kerns. Ex-
tra parameters are introduced (and adapted)
that influence the decisions for breaking lines.
There is also code originating in pdfTEX
which deals with poor mans grid snapping
although that is quite isolated and not inter-
woven.

• Because it uses a slightly different way to deal
with hyphenation, LuaTEX itself also adds
some code.

• Tracing is sort of interwoven in the code. As
it uses goto's to share code instead of func-
tions, one needs to keep a good eye on what
gets skipped or not.

I'm pretty sure that the code that we started with
looks quite different from the original TEX code if
it had been trasnslated into C. Actually in modern
TEX compiling involves a translation into C first but
the intermediate form is not meant for human eyes.
As the LuaTEX project started from that merged
code, Taco and Hartmut already spend quite some
time on making it more readable. Of course the
original comments are still there.
Cleaning up such code takes a while. Because both
languages are similar but also quite different it took
some time to get compatible output. Because the C
code uses macros, careful checking was needed. Of
course Lua's table model and local variables brought
some work as well. And still the code looks a bit C--
ish. We could not divert too much from the original
model simply because it's well documented.
When moving around code redundant tests and or-
phan code has been removed. Future versions (or
variants) might as well look much different as I want
more hooks, clearly split stages, and convert some
linked list based mechanism to Lua tables. On the
other hand, as already much code has been written
for ConTEXt MkIV, making it all reasonable fast
was no big deal.

3 Expansion

The original C--code related to protrusion and ex-
pansion is not that efficient as many (redundant)
function calls take place in the linebreaker and
packer. As most work related to fonts is done in
the backend, we can simply stick to width calcula-
tions here. Also, it is no problem at all that we use
floating point calculations (as Lua has only floats).
The final result will look okay as the original hpack
routine will nicely compensate for rounding errors as

it will normally distribute the content well enough.
We are currently compatible with the regular par
builder and protrusion code, but expansion gives dif-
ferent results (actually not worse).
The Lua hpacker follows a different approach. And
let's admit it: most TEXies won't see the difference
anyway. As long as we're cross platform compatible
it's fine.
It is a well known fact that character expansion
slows down the parbuilder. There are good rea-
sons for this in the pdfTEX approach. Each glyph
and intercharacter kern is checked a few times for
stretch or shrink using a function call. Also each
font reference is checked. This is a side effect of the
way pdfTEX backend works as there each variant has
its own font. However, in LuaTEX, we scale inline
and therefore don't really need the fonts. Even bet-
ter, we can get rid of all that testing and only need
to pass the eventual expansion_ratio so that the
backend can do the right scaling. We will prototype
this in the Lua version1 and we feel confident about
this approach it will be backported into the C code
base. So eventually the C might become a bit more
readable and efficient.
Intercharacter kerning is dealt with somewhat
strange. When a kern of subtype zero is seen, and
when it's neighbours are glyphs from the same font,
the kern gets replaced by a scaled one looked up in
the font's kerning table. In the parbuilder no real re-
placement takes place but as each line ends up in the
hpack routine (where all work is simply duplicated
and done again) it really gets replaced there. When
discussing the current aproach we decided that ma-
nipulating intercharacter kerns while leaving regu-
lar spacing untouched is not really a good idea so
there will be an extra level of configuration added
to LuaTEX:2

0 no character and kern expansion
1 character and kern expansion applied to com-

plete lines
2 character and kern expansion as part of the par

builder
3 only character expansion as part of the par

builder (new)

1 For this Hartmuts has adapted the backend code has to
honour this field in the glyph and kern nodes.

2 As I more and more run into books typeset (not by TEX)
with a combination of character expansion and additional
intercharacter kerning I've been seriously thinking of re-
moving support for expansion from ConTEXt MkIV. Not
all is progress especially if it can be abused.



TUGboat, Volume 99 (2010), No. 9 101

Hans Hagen

You might wonder what happens when you unbox
such a list: the original font references have been
replaced as are the kerns. However, when repack-
aged again, the kerns are replaced again. In tradi-
tional TEX, indeed rekerning might happen when a
paragraph is repackaged (as different hyphenation
points might be chosen and ligature rebuilding etc.
has taken place) but in LuaTEX we have clearly sep-
arated stages. An interesting side effect of the con-
version is if that we really have to wonder what cer-
tain code does and if it's still needed.

4 Performance

We had already noticed that the Lua variant was not
that slow so after the first cleanup it was time to do
some tests. We used our regular tufte.tex test file.
This happens to be a worst case example because
each broken line ends with a comma or hyphen and
these will hang into the margin when protruding is
enabled. So the solution space is rather large (an
example will be shown later).
Here are some timings of the March 26, 2010 version.
The test is typeset in a box so no shipout takes place.
We're talking of 1000 typeset paragraphs. The times
are in seconds an between parentheses the speed rel-
ative to the regular parbuilder is mentioned.

native lua lua + hpack
normal 1.6 8.4 (5.3) 9.8 (6.1)
protruding 1.7 14.2 (8.4) 15.6 (9.2)
expansion 2.3 11.4 (5.0) 13.3 (5.8)
both 2.9 19.1 (6.6) 21.5 (7.4)

For a regular paragraph the Lua variant (currently)
is 5 times slower and about 6 times when we use
the Lua hpacker, which is not that bad given that
it's interpreted code and that each access to a field
in a node involves a function call. Actually, we can
make a dedicated hpacker as soem code can be omit-
ted, The reason why the protruding is relative slow
is that we have quite some protruding characters in
the test text (many commas and potential hyphens)
and therefore we have quite some lookups and cal-
culations. In the C variant much of that is inlined
by macros.
Will things get faster? I'm sure that I can boost the
protrusion code and probably the rest as well but
it will always be slower than the built in function.
This is no problem as we will only use the Lua vari-
ant for experiments and special purposes. For that
reason more MkIV like tracing will be added (some
is already present) and more hooks will be provides

once that the builder is more compartimized. Also,
future versions of LuaTEX will pass around para-
grapgh related parameters differently so that will
have impact on the code as well.

5 Usage

The basic parbuilder is enabled and disabled as fol-
lows:3

\definefontfeature[example][default][protrusion=pure]
\definedfont[Serif*example]
\setupalign[hanging]

\startparbuilder[basic]
\startcolor[blue]

\input tufte
\stopcolor

\stopparbuilder

This results in:
We thrive in information--thick worlds because of
our marvelous and everyday capacity to select, edit,
single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, re-
duce, boil down, choose, categorize, catalog, clas-
sify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick
over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip
into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep
from the goats.
There are a few tracing options in the parbuilders
namespace but these are not stable yet.

6 Conclusion

The module started working quiet well around the
time that Peter Gabriels “Scratch My Back” ended
up in my Squeezecenter: modern classical interpre-
tations of some of his favourite songs. I must admit
that I scratched the back of my head a couple of
times when looking at the code below. It made me
realize that a new implementation of a known prob-
lem indeed can come out quite different but at the
same time has much in common. As with music it's
a matter of taste which variant a user likes most.

3 I'm not sure yet if the parbuilder has to do automatic
grouping.



102 TUGboat, Volume 99 (2010), No. 9

Building paragraphs

At the time of this writing there is still work to do.
For instance the large functions need to be broken

into smaller steps. And of course more testing is
needed.


