
Hans Hagen

Grouping

Hans Hagen
PRAGMA ADE, Ridderstraat 27, 8061GH Hasselt NL
pragma@wxs.nl

Abstract
In this article I will discuss a few things that are hard to do in traditional TEX, but reasonable well in
LuaTEX.

1 Variants

After using TEX for a while you get accustomed to
one of its interesting concepts: grouping. Program-
ming languages like Pascal and Modula have key-
words begin and end. So, one can say:

if test then begin
print_bold("test 1")
print_bold("test 2")

end

Other languages provide a syntax like:

if test {
print_bold("test 1")
print_bold("test 2")

}

So, in those languages the begin and end and/or
the curly braces define a ‘group' of statements. In
TEX on the other hand we have:

test \begingroup \bf test \endgroup test

Here the second test comes out in a bold font and
the switch to bold (basically a different font is se-
lected) is reverted after the group is closed. So, in
TEX grouping deals with scope and not with group-
ing things together.
In other languages it depends on the language of
locally defined variables are visible afterwards but
in TEX they're really local unless a \global prefix
(or one of the shortcuts) is used.
In languages like Lua we have constructs like:

for i=1,100 do
local j = i + 20
...

end

Here j is visible after the loop ends unless prefixed
by local. Yet another example is METAPOST:

begingroup ;
save n ; numeric n ; n := 10 ;
...

endgroup ;

Here all variables are global unless they are explic-
itly saved inside a group. This makes perfect sense
as the resulting graphic also has a global (accumu-
lated) property. In practice one will rarely needs
grouping, contrary to TEX where one really wants
to keep changes local, if only because document con-
tent is so unpredictable that one never knows when
some change in state happens.
In principle it is possible to carry over information
across a group boundary. Consider this somewhat
unrealistic example:

\begingroup
\leftskip 10pt
\begingroup

....
\advance\leftskip 10pt
....

\endgroup
\endgroup

How do we carry the advanced leftskip over the
group boundary without using a global assignment
which could have more drastic side effects? Here is
the trick:

\begingroup
\leftskip 10pt
\begingroup

....
\advance\leftskip 10pt
....
\expandafter

100 TUGboat, Volume 99 (2010), No. 9

Grouping

\endgroup
\expandafter \leftskip \the\leftskip

\endgroup

This is typical the kind of code that gives new users
the creeps but normally they never have to do that
kind of coding. Also, that kind of tricks assumes
that one knows how many groups are involved.

2 Implication

What does this all have to do with LuaTEX and
MkIV? The user interface of ConTEXt provide lots
of commands like:

\setupthis[style=bold]
\setupthat[color=green]

Most of them obey grouping. However, consider
a situation where we use Lua code to deal with
some aspect of typesetting, for instance numbering
lines or adding ornamental elements to the text. In
ConTEXt we flag such actions with attributes and
often the real action takes place a bit later, for in-
stance when a paragraph or page becomes available.
A comparable pure TEX example is the following:

{test test \bf test \leftskip10pt test}

Here the switch to bold happens as expected but
no leftskip of 10pt is applied. This is because the
set value is already forgotten when the paragraph is
actually typeset. So in fact we'd need:

{test test \bf test \leftskip10pt test \par}

Now, say that we have:

{test test test \setupflag[option=1] \flagnexttext
test}

We flag some text (using an attribute) and expect it
to get a treatment where option 1 is used. However,
the real action might take place when TEX deals
with the paragraph or page and by that time the
specific option is already forgotten or it might have
gotten another value. So, the rather natural TEX
grouping does not work out that well in a hybrid
situation.
As the user interface assumes a consistent behaviour
we cannot simply make these settings global even if
this makes much sense in practice. One solution is
to carry the information with the flagged text i.e.

associate it somehow in the attribute's value. Of
course, as we never know in advance when this in-
formation is used, this might result in quite some
states being stored persistently.
A side effect of this ‘problem' is that new commands
might get suboptimal user interfaces (especially in-
heritance or cloning of constructs) that are some-
what driven by these ‘limitations'. Of course we
may wonder if the end user will notice this.
To summarize this far, we have three sorts of group-
ing to deal with:

• TEX's normal grouping model limits its scope
to the local situation and normally has only
direct and local consequences. We cannot
carry information over groups.

• Some of TEX's properties are applied later,
for instance when a paragraph or page is
typeset and in order to make ‘local' changes
effective, the user needs to add explicit para-
graph ending commands (like \par or \page).

• Features dealt with asynchronously by Lua
are at that time unaware of grouping and
variables set that were active at the time
the feature was triggered so there we need
to make sure that our settings travel with the
feature. There is not much that a user can do
about it as this kind of management has to
be done by the feature itself.

It is the third case that we will give an example of
in the next section. We leave it up to the user if it
gets noticed on the user interface.

3 An example

A group of commands that has been reimplemented
using a hybrid solution is underlining or more
generic: bars. Just take a look at the following ex-
amples and try to get an idea on how to deal with
grouping. Keep in mind that:

• Colors are attributes and are resolved in the
backend, so way after the paragraph has been
typesetting.

• Overstrike is also handled by an attribute and
gets applied in the backend as well, before
colors are applied.

• Nested overstrikes might have different set-
tings.

• An overstrike rule either inherits from the
text or has its own color setting.

TUGboat, Volume 99 (2010), No. 9 101

Hans Hagen

First an example where we inherit color from the
text:

\definecolor[myblue][b=.75]
\definebar[myoverstrike][overstrike][color=]

Test \myoverstrike{%
Test \myoverstrike{\myblue

Test \myoverstrike{Test}
Test}

Test}
Test

Test Test Test Test Test Test Test
Because color is also implemented using attributes
and processed later on we can access that informa-
tion when we deal with the bar.
The following example has its own color setting:

\definecolor[myblue][b=.75]
\definecolor[myred] [r=.75]
\definebar[myoverstrike][overstrike][color=myred]

Test \myoverstrike{%
Test \myoverstrike{\myblue

Test \myoverstrike{Test}
Test}

Test}
Test

Test Test Test Test Test Test Test
See how can we color the levels differently:

\definecolor[myblue] [b=.75]
\definecolor[myred] [r=.75]
\definecolor[mygreen][g=.75]

\definebar[myoverstrike:1][overstrike][color=myblue]
\definebar[myoverstrike:2][overstrike][color=myred]
\definebar[myoverstrike:3][overstrike][color=mygreen]

Test \myoverstrike{%
Test \myoverstrike{%

Test \myoverstrike{Test}
Test}

Test}
Test

Test Test Test Test Test Test Test
Watch this:

\definecolor[myblue] [b=.75]
\definecolor[myred] [r=.75]

\definecolor[mygreen][g=.75]

\definebar[myoverstrike][overstrike][max=1,dy=0,offset=.5]
\definebar[myoverstrike:1][myoverstrike][color=myblue]
\definebar[myoverstrike:2][myoverstrike][color=myred]
\definebar[myoverstrike:3][myoverstrike][color=mygreen]

Test \myoverstrike{%
Test \myoverstrike{%

Test \myoverstrike{Test}
Test}

Test}
Test

Test Test Test Test Test Test Test
It this the perfect user interface? Probably not, but
at least it keeps the implementation quite simple.
The behaviour of the MkIV implementation is
roughly the same as in MkII, although now we spec-
ify the dimensions and placement in terms of the
ratio of the x-height of the current font.

Test \overstrike{Test \overstrike{Test \overstrike{Test}
Test} Test} Test \blank
Test \underbar {Test \underbar {Test \underbar
{Test} Test} Test} Test \blank
Test \overbar {Test \overbar {Test \overbar
{Test} Test} Test} Test \blank
Test \underbar {Test \overbar {Test \overstrike{Test}
Test} Test} Test \blank

Test Test Test Test Test Test Test

Test Test Test Test Test Test Test

Test Test Test Test Test Test Test

Test Test Test Test Test Test Test

As an extra this mechanism can also provide simple
backgrounds. The normal background mechanism
uses METAPOST and the advantage is that we can
use arbitrary shapes but it also carries some limi-
tations. When the development of LuaTEX is a bit
further along the road I will add the possibility to
use METAPOST shapes in this mechanism.
Before we come to backgrounds, first take a look at
these examples:

\startbar[underbar] \input zapf \stopbar \blank
\startbar[underbars] \input zapf \stopbar \blank

Coming back to the use of typefaces in electronic

102 TUGboat, Volume 99 (2010), No. 9

Grouping

publishing: many of the new typographers receive
their knowledge and information about the rules of
typography from books, from computer magazines
or the instruction manuals which they get with the
purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old
days, showing the differences between good and bad
typographic design. Many people are just fascinated
by their PC's tricks, and think that a widely--praised
program, called up on the screen, will make every-
thing automatic from now on.

Coming back to the use of typefaces in electronic
publishing: many of the new typographers receive
their knowledge and information about the rules of
typography from books, from computer magazines
or the instruction manuals which they get with the
purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old
days, showing the differences between good and bad
typographic design. Many people are just fascinated
by their PC's tricks, and think that a widely--praised
program, called up on the screen, will make every-
thing automatic from now on.

First notice that it is no problem to span multiple
lines and that hyphenation is not influenced at all.
Second you can see that continuous rules are also
possible. From such a continuous rule to a back-
ground is a small step:

\definebar
[backbar]
[offset=1.5,rulethickness=2.8,color=blue,
continue=yes,order=background]

\definebar
[forebar]
[offset=1.5,rulethickness=2.8,color=blue,
continue=yes,order=foreground]

The following example code looks messy but this has
to do with the fact that we want properly spaced
sample injection.

from here
\startcolor[white]%

\startbar[backbar]%
\input zapf
\removeunwantedspaces

\stopbar
\stopcolor

\space till here

\blank
from here

\startbar[forebar]%
\input zapf
\removeunwantedspaces

\stopbar
\space till here

from here Coming back to the use of typefaces in
electronic publishing: many of the new typogra-
phers receive their knowledge and information about
the rules of typography from books, from computer
magazines or the instruction manuals which they get
with the purchase of a PC or software. There is not
so much basic instruction, as of now, as there was in
the old days, showing the differences between good
and bad typographic design. Many people are just
fascinated by their PC's tricks, and think that a
widely--praised program, called up on the screen,
will make everything automatic from now on. till
here

from here Coming back to the use of typefaces in
electronic publishing: many of the new typogra-
phers receive their knowledge and information about
the rules of typography from books, from computer
magazines or the instruction manuals which they get
with the purchase of a PC or software. There is not
so much basic instruction, as of now, as there was in
the old days, showing the differences between good
and bad typographic design. Many people are just
fascinated by their PC's tricks, and think that a
widely--praised program, called up on the screen,
will make everything automatic from now on. till
here
Watch how we can use the order to hide content. By
default rules are drawn on top of the text.
Nice effects can be accomplished with transparen-
cies:

\definecolor [tblue] [b=.5,t=.25,a=1]
\setupbars [backbar] [color=tblue]
\setupbars [forebar] [color=tblue]

We use as example:

from here {\white \backbar{test test}
\backbar {nested nested} \backbar{also also}}

till here
from here {\white \backbar{test test

\backbar {nested nested} also also}}
till here
from here {\white \backbar{test test

TUGboat, Volume 99 (2010), No. 9 103

Hans Hagen

\backbar {nested nested} also also}}
till here

from here test test nested nested also also till here
from here test test nested nested also also till here
from here test test nested nested also also till here
The darker nested variant is just the result of two
transparent bars on top of each other. We can limit
stacking, for instance:

\setupbars[backbar][max=1]
\setupbars[forebar][max=1]

This gives
from here test test nested nested also also till here
from here test test nested nested also also till here
from here test test nested nested also also till here
There are currently some limitations that are mostly
due to the fact that we use only one attribute for
this feature and a change in value triggers another
handling. So, we have no real nesting here.
The default commands are defined as follows:

\definebar[overstrike] [method=0,dy= 0.4,offset=
0.5]
\definebar[underbar] [method=1,dy=-0.4,offset=-0.3]
\definebar[overbar] [method=1,dy= 0.4,offset=
1.8]

\definebar[overstrikes] [overstrike] [continue=yes]
\definebar[underbars] [underbar] [continue=yes]
\definebar[overbars] [overbar] [continue=yes]

As the implementation is rather non-intrusive you
can use bars almost everywhere. You can underbar
a whole document but equally well you can stick to
fooling around with for instance formulas.

\definecolor [tred] [r=.5,t=.25,a=1]
\definecolor [tgreen] [g=.5,t=.25,a=1]
\definecolor [tblue] [b=.5,t=.25,a=1]

\definebar [mathred] [backbar] [color=tred]
\definebar [mathgreen] [backbar] [color=tgreen]
\definebar [mathblue] [backbar] [color=tblue]

\startformula
\mathred{e} = \mathgreen{\white mc} ^ {\mathblue{\white

e}}
\stopformula

We get:

e = mce

We started this chapter with some words on group-
ing. In the examples you see no difference between
adding bars and for instance applying color. How-
ever you need to keep in mind that this is only be-
cause behind the screens we keep the current set-
tings along with the attribute. In practice this is
only noticeable when you do lots of (local) changes
to the settings. Take:

{test test test \setupbars[color=red] \underbar{test}
test}

This results in a local change in settings, which in
turn will associate a new attribute to \underbar.
So, in fact the following underbar becomes a differ-
ent one that previous underbars. When the page
is prepared, the unique attribute value will relate to
those settings. Of course there are more mechanisms
where such associations take place.

4 More to come

Is this all there is? No, as usual the underlying
mechanisms can be used for other purposes as well.
Take for instance inline notes:

According to the wikipedia this is the longest
English word:
pneumonoultramicroscopicsilicovolcanoconiosis~\shiftup
{other long
words are pseudopseudohypoparathyroidism and
flocci­nauci­nihili­pili­fication}. Of course
in languags like Dutch and
German we can make arbitrary long words by pasting
words together.

This will produce:
According to the wikipedia this is the longest
English word: pneumonoultramicroscopicsilicovol-
canoconiosis other long words are pseudopseudohypoparathy-

roidism and floccinaucinihilipilification. Of course in languags
like Dutch and German we can make arbitrary long
words by pasting words together.
I wonder when users really start using such features.

5 Summary

Although under the hood the MkIV bar commands
are quite different from their MkII counterparts
users probably won't notice much difference at first
sight. However, the new implementation does not

104 TUGboat, Volume 99 (2010), No. 9

Grouping

interfere with the par builder and other mechanisms.
Plus, it configurable and it offers more functional-
ity. However, as it is processed rather delayed, side
effects might occur that are not foreseen.
So, if you ever notice such unexpected side effects,
you know where it might result from: what you
asked for is processed much later and by then the cir-

cumstances might have changed. If you suspect that
it relates to grouping there is a simple remedy: de-
fine a new bar command in the document preamble
instead of changing properties mid-document. Af-
ter all, you are supposed to separate rendering and
content in the first place.

