Omega, OpenType and the XML World

Yannis Haralambous
ENST Bretagne, Brest, France

John Plaice
UNSW, Sydney, Australia

Origins of (2

Conceived in February 1993 (Lille, F).
Public discussion in July 1993 at TUG (Aston, UK).
Multilingual typesetting extensions to TEX.

All TgX 8-bit data structures become 16-bit in ().
()TP-lists used to prepare input for typesetting.
Basic TEX typesetting algorithms are unchanged.

Support for multiple direction typesetting.

Where is {2 Heading?

e () version 2 (Free Software)
— When do we get PDF-XML-HTML-UTF8-0T-e-{2?

— Two grants from the TEX Users Group.
x Combining the Extensions of TEX into One System.

x Using Omega to Generate XML and MathML from
TEX Documents.
e () version 3 (Research)

— Redesigning typesetting from the ground up.

— “A Multidimensional Approach to Typesetting”
9:00 presentation Wednesday 23 July.

(2, Version 2

Upwardly compatible with TEX.

Adaptable, context-dependent.
“Standards-compliant” (Unicode, XML, OpenType).
All new code written in C++/STL.

No fixed-size arrays, 31 bits for characters, glyphs, etc.

Distribution in 2003.

Participants

e UNSW, Sydney
— John Plaice
— Paul Swoboda
— Lap Yu (Kenneth) Ho
— Gabriel Christian Ditu

e ENST-Bretagne, Brest
— Yannis Haralambous

— Gabér Bella

— Pawetl Grams

Workflow — Input

Running tree-structured context initialized from

command-line and environment variables.
Entire input is passed through (2TP-list, possibly empty.
()TP-list interpretation is context-dependent.

Direct input uses deserialization methods

to create internal data structures.

TEX-style input converts character set, using iconv,
to UCs-4 (4-byte 150-10646/Unicode).

Workflow — Output

Macro-expansion is context-dependent.
Text is passed through QTP-list, possibly empty:.
TEX typesetting algorithms are used.

Direct output uses serialization methods

to output internal data structures.
DVI output is still available.

Entire output is passed through QTP-list, possibly empty.

What are the roéles of
XML and OpenType?

Current Plans: XML and OpenType

1. Input filter converting XML — KTEX.
2. Direct output of XML and MathML.
3. Output filter converting DVI — DVX (XML).

4. Use of OpenType fonts with (2.

XBTEX: XML Input

What is BTEX?

A series of concepts (boxes, glue, words, paragraphs, pages,

footnotes, tables, floating objects, fonts, etc.)

A series of methods (document, itemize, enumerate,

minipage, includegraphics, usepackage, etc.)
A syntar (commands, environments, catcodes, etc.)

The possibility to use lower level syntax, whenever
necessary (TEX, PostScript).

What is XIATEX?

We keep the same concepts.
We keep the same methods.
We change the syntax.

We keep the possibility to use lower level syntax whenever
necessary: KX, TEX, PostScript.

Only a well-formed and valid XETEX document can be
converted to KIEX, so say goodbye to XIEX errors!
TEX compilation can only go smoothly.

Why is XML a Better Syntax?

Few special characters: <, > and & (sometimes > and ").
These characters all have standard syntax

(&1t; > & ' ").

Tag names are well defined and delimited: <TeX/>

(no ambiguity about white space, as in \TeX).

Clear separation between data, meta-data and keywords:

<textcolor color="red">A word</textcolor>

Can switch notations using processing instructions:

<?7tex now we are back in \LaTeX?>

And What About XML Documents?

They are trees (not limiting; with name spaces and tools

such as XLink one can create structures that are not trees).
Global or partial validation using DTDs or Schemas.
Well-defined encoding (by default: UTF-8).

Can carry meta-data (RDF, ontologies).

Many tools to edit, parse and transform them
(only TEX can read TgX, zillions of tools can read XML).

Have become a standard for information exchange.

Is XETEX Yet Another DTD?

o Yes, XKIEX is YAD.

e However, the element and attribute names strangely

resemble M TEX command and environment names.

e The goal is to minimize the learning curve of XIMTEX
for XTRXists.

<itemize>
<item>Does this look <emph>familiar?</emph></item>

</itemize>

XETEX Code: Documents

<document class="article" opt="12pt,adpaper">

<section id="sl1">My first section</section>

. ..<1ncludegraphics bbox="10 20 100 120"
src="toto.eps"/>...

</document>

e The document is contained in a <document> element.

The document class and its options are attributes.

e On a first run, the filter can detect if packages are needed

(<includegraphics> needs graphics or graphicx).

e [ixplicit <usepackage> and <preamble> also available.

XETEX Code: Labels

<figure pos="t"><includegraphics bbox="10 20 100 120"

src="toto.eps"/>
<caption id="capl1">This is figure<nbsp/><ref
id="capl"/>, on page<nbsp/><pageref~id="capl"/>.
</caption></figure>

e Flements can have id attribute, equivalent to \label.
e <includegraphics> is an empty element (no textual data).
e Non-breakable space: Unicode 0xa0 or empty <nbsp/>.

e User-defined entities (such as) can be added.

XETEX Code: Verbatim

<7verbatim

this 1s pure verbatim
1 < 2, Y&, \end, $x"{}2%
7>

e Verbatim code is obtained not by an element, but by a

processing instruction.
e Inside the verbatim PI, everything is allowed, except 7>.

e There are also verbatimstar, verb and verbstar

processing instructions.

XETEX Code: Nested Verbatim

<footnote>Believe 1t or not: <?verbatim
you can put verbatim code into footnotes!
?></footnote>

e This works because the code produced by verbatim is not
a I TEX verbatim environment, but a quotation

environment.
e Special characters are protected and lines are obeyed.

e All the (notorious) incompatibility problems of verbatim

environment are gone.

XETEX Code: Table of Contents

<gsection id="s1">
<toc>A Short Title.</toc>A Long Title.

</section>
e The id attribute holds the section label (meta-data).

e The “short version” of the title (for the Table of contents)
may contain other mark up. It can only be a sub-element of

<section>.

XETEX Code: Tables

<tabular format="|c|c|"><hline/>
A <tab/> B

C <tab/> D
<hline/>
</tabular>

e Tables have the same logic as in IXTEX.
e One can also write <tabular><format>...</format>...

e <tab/> is used both in <tabular> and <tabbing>, with

different productions.

XETEX Code: Shortcuts

Writing:
this is <i>code in emphatic style</i>
is shorter than:

<textbf>this is <textit>code in
<emph>emphatic </emph> style</textit></textbf>

e We keep the widely known shorter and easy to understand
HTML tags: <i> and <textit> produce the same result.

e There is a <p> element to produce an empty line. It is

practical for carrying attributes: <p indent="0pt">.

XETEX Code: Direct TEX Input

It really necessary

<7?tex One can always return to
\emph{good o0l’ \LaTeX\ldots} 7>

e XML is a hostile environment for you? The XIEX syntax
world is always available. You don’t need Mr. Sulu to beam
you between worlds, the <?tex ... 7> processing

instruction is enough.

XETEX Code: Namespaces

<?xml version="1.0" encoding="1s0-8359-1"7>
<document xmlns="http://omega.enstb.org/2003/xlatex"
xmlns :mml="http://www.w3.0org/1998/Math/MathML"
xmlns:svg="http://www.w3.0rg/2000/svg">

</document>

o XIKIEX document with MathML formulas and SVG figures.

e One can also write mathematics by using a TEX processing

instruction: <7math x"2+y~2=0 7>.

XETEX Code: Adding New Elements

<toto>Some words</toto>
<titi argl="bla" arg2="bli">and more</titi>

<tata_ optarg="t">Something</tata_>
i1s transformed without validation into:

\toto{Some words}
\titi{blat{bli}\{and more\}
\begin{tata}[t]

Something

\end{tata}

() Becomes Part of the XML World

o XKTEX documents can be placed directly on the Web, since
XSLT stylesheets can transtorm them to XHTML.

e One can write XSLT stylesheets to transform DocBook or
TEI into XEITEX.

e Using namespaces virtually any XML tool can be combined
with XKTEX elements.

Dairect output of XML and MathML

Getting MathML out of TEX Documents (1)

e Project initiated by American Mathematical Society.

e Inside €2, new sgml_node holds a tagged list.

e Automatic grouping of expressions to form proper <mrow>.
e New primitives to generate entities.

\def\arccos{\SGMLentityop{mi}t{arccos}}

Getting MathML out of TEX Documents (2)

e New primitives to redefine math at the macro level

\renewcommand{\sqrt}{\Q@ifnextchar[\sqrttwo\sqrtone}
\newcommand{\sqrtone}[1]{%
\SGMLstartmathtag{msqrt} #1
\SGMLendmathtag{msqrt}}
\def\sqrttwo [#1]{\sqrttwoend{#1}}
\newcommand{\sqrttwoend} [2]{%
\SGMLstartmathtag{mroot} {#2} {#1}
\SGMLendmathtag{mroot}}

Getting XML out of TEX Documents

e New primitives to redefine structural components

\def\section#1{/,

\@closepar?,

\@closesection},

\@startsection},

\refstepcounter{section},
\SGMLattribute{type}{\@sectiontypel’
\SGMLattribute{n}{\thesectionl}
\SGMLstarttexttag{head}#1\SGMLendtexttag{head}V
\@startpary,

¥

DVX: XML Output

Transforming DVI Directly Into XML

e DTD for DVI, called DVX.

<?xml version="1.0"7>
<dvx version="1.0">
<pre id="2" num="25400000"
den="473623672" mag="1000"
string=" Omega output 2003.05.09:2000"/>
<page 1d1="1005" 1d2="0" 1d3="0" id4="0" id5="O0O"
idé="0" id7="0" id8="0" id9="0" id10="0"/>
<fontdef 1d="31" checksum="13831053770"
s1ze="655360" designsize="655360"

name="cmss10"/>

Transforming DVI Directly Into XML

e DTD for DVI, called DVX.

<set>Y</set>

<right dim="-18205"/>
<set>ou</set>

<right dim="285661"/>
<set>a</set>

<right dim="-18205"/>
<set>re</set>

<right dim="285661"/>
<set>reading.</set>

Moving to OpenType Fonts

Printing OpenType fonts

Adaptation of odvips so that OpenType (and TrueType)

fonts are treated as are PostScript fonts.
The €2 engine still uses OFM files.

OpenType fonts are included in the psfonts.map file.

Tfmname InternalName </access/path/filename.otf

One OpenType font will generate (many) Typel fonts
using only those glyphs used.

Intermediate PostScript Font Container (PFC) file to hold
Type 1 descriptions to draw the glyphs.

Current directions

Get out and polish the distribution.
Adapt) to directly read .otf files.

Develop DTDs so that) can ensure round-trip conversion:
() reads XML and generates the identical XML.

Longer term:

— Direct XML input without TEX macro processing.

— Direct XML (SVG) output, as annotation of input.

