Building TEX Live (2024)

2024 release
March 2024

Peter Breitenlohner
Karl Berry
https://tug.org/texlive

https://tug.org/texlive

This file documents the TEX Live build system and more.

Copyright (©) 2016-2024 Karl Berry.

Copyright (©) 2013-2015 Karl Berry & Peter Breitenlohner.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the TEX Users Group.

Short Contents

W © 0 O Ul A W N

Introduction 1
Overview of build system 2
Prerequisiteso 3
Building. o)
Installingo oo e 11
Layout and infrastructure........... 14
Configure optionst 25
Coding conventionscvuu et 31
Continuous integration 33
install-tl. ... 35
tmgr o o 46

Table of Contents

1 Introduction................. 1
2 Overview of build system 2
3 Prerequisites 3
4 Building 5%
4.1 Build iteration.o 5
4.2 Build in parallel i)
4.3 Build distribution 5
4.4 Build one package 6
4.5 Build one engine. ... 7
4.6 Cross compilation i 8
4.6.1 Cross configuring ..., 9

4.6.2 Cross problemst 9

5 Installing........ 11
5.1 Installation directories.c.coooiiiiiiiiiiiiii i, 11
5.2 Linked SCTIPtS .« oo vvtiii e 11
5.3 Distrobuilds 12

6 Layout and infrastructure...................... 14
6.1 Build system tools........ ... 14
6.2 Top-level directories. 14
6.3 Autoconf macros 15
6.3.1 General SEtUDP MACTOSttt 15

6.3.2 Macros for programs.ouueeene i 16

6.3.3 Macros for compilerso i 16

6.3.4 Macros for libraries. ... 16

6.3.5 Macros for library and header flags 17

6.3.6 Macros for Windows. ..., 17

6.4 Library modules........ ... 18
6.4.1 The png library in libs/libpng..........cccoiiiiiin... 18

6.4.2 The zlib library in 1ibs/zlib ..., 19

6.4.3 The freetype library in libs/freetype2.................. 19

6.4.4 The kpathsea library in texk/kpathsea................... 19

6.5 Program modules 20
6.5.1 The tilutils package in utils/tlutils................... 20

6.5.2 The xindy package in utils/xindy.................coon... 20

6.5.3 The xdvik package in texk/xdvik...................... ... 20

6.5.4 The subdirectory utils/asymptote.............c..covuee... 21

6.6 Extending TEX Live........cooiiiiiiii i 21
6.6.1 Adding a new program module 21
6.6.2 Adding a new engineo.iiiiiiii i 23
6.6.3 Adding a new generic library module 23
6.6.4 Adding a new TEX-specific library module 24

7 Configure options................ 25

7.1 Global configure options...........c.cooiiiiiiii i 25
7.1.1 --disable-native-texlive-build 25
7.1.2 —-prefix, ——bindir, 25
7.1.3 --disable-largefileciiiiiiiiiiiiian.. 25
7.1.4 --disable-missing................ il 26
7.1.5 --enable-compiler-warnings=level...................... 26
7.1.6 --enable-cxx-runtime-hackccciiian. 26
7.1.7 --enable-maintainer-mode.................oiiiiiiiio... 26
7.1.8 --enable-multiplatform................ 26
7.1.9 --enable-shared............o 26
7.1.10 --enable-silent-rules...........ccoiiiiiiriiinnnnnn... 26
7.1.11 ——without—1n-sttt 26
7112 ——without—X....ooiiiiii i e 26

7.2 Program-specific configure options............. oL 27
7.2.1 --enable-prog, ——disable-prog.......................... 27
7.2.2 ——disable-all-pKgS.......c.coiiiimiiiiiiiiiiiiiaaa.. 27
7.2.3 Configure options for texk/web2c.......... ..., 27
7.2.4 Configure options for texk/bibtex—x..............coo.... 28
7.2.5 Configure options for texk/dvipdfm-x..................... 28
7.2.6 Configure options for texk/dvisvgm....................... 28
7.2.7 Configure options for texk/texliveccviuue. .. 29
7.2.8 Configure options for texk/xdvik.................ooui... 29
7.2.9 Configure options for utils/xindyccoooeie.n.. 29

7.3 Library-specific configure options............... 29
7.3.1 Configure options for kpathsea, 29

7.4 Variables for configure............. .. i 30

Coding conventions............................. 31
8.1 Declarations and definitions il 31
8.2 COMSE . vttt e 32

Continuous integration......................... 33

9.1 Transfer from Subversion to Github.............., 33

9.2 Automatic update of the Git mirror 33

9.3 CI testing on Travis-ClL....... ... i 34

9.4 Releases on Githubo 34

iii

Appendix A install-tl............................. 35
A1 install-tl NAME . ..o 35
A2 install-tl SYNOPSIS 35
A.3 install-tl DESCRIPTIONo i 35
A4 REFERENCES. e 35
A5 install-tl EXAMPLES ... 35
A6 install-tl OPTIONS. ... e 36
A7 PROFILES. ... e 41
A.8 ENVIRONMENT VARIABLES. ..., 43
A9 DIRECTORY TREES.o 44
A0 install-tl BUGS 45
A.11 AUTHORS AND COPYRIGHT i, 45

Appendix B tlmgr.................. 46
B.1 tlmgr NAME ... 46
B.2 tlmgr SYNOPSIS o 46
B.3 tlmgr DESCRIPTION ... 46
B.4 tlmgr EXAMPLESo 46
B.5 tlmgr OPTIONS e 47
B.6 ACTIONS .. 50

B.6.1 help ... 50
B.6.2 version. ... 50
B.6.3 backupcooiiiii 50
B.6.4 bug [search-string] i 51
B.6.5 candidates pkg....... ... 51
B.6.6 check [option...]

[depends | executes | files | runfiles | texmfdbslall] 51
B.6.7 conf ... o 52
B.6.8 dump-tlpdb [option...] [§son] 53
B.6.9 generate....... ... 53
B0 GUL vt e 55
B.6.11 info. ... 99
B.6.12 init-usertree............ i 56
B.6.13 install [option...] pkg... ... 56
BB 14 KReY .t 57
B.6.15 LSt .o 58
B.6.16 optiono 58
B.6.17 paper. ... 59
B.6.18 path. ..o 60
B.6.19 pinningouuiiii 60
B.6.20 platform........ ..o 61
B.6.21 postactionccoiiiiii 61
B.6.22 print-platform 62
B.6.23 print-platform-info....... 62
B.6.24 remove [option...] pkg... i 62
B.6.25 1epository oo 63

iv

B.6.20 restore.o 64

B.6.27 search 64
B.6.28 shello 65
B.6.29 Show.o 66
B.6.30 uninstall.......... 66
B.6.31 update [option...] [pkg...] ... 66
B.7 CONFIGURATION FILE FOR TLMGR....................... 69
B.8 CRYPTOGRAPHIC VERIFICATIONcciiiia... 70
B.8.1 Configuration of GnuPG invocation 71
B.9 USER MODE e 71
B.9.1 Usermodeinstall i, 72
B.9.2 User mode backup, restore, remove, update................ 72
B.9.3 User mode generate, option, paper 72
B.9.4 User mode logs.covumuiiiiii i, 72
B.10 MULTIPLE REPOSITORIESt 72
B.10.1 Pinning.o 73
B.11 GUIFOR TLMGR ... e 74
B.11.1 Main displayouoiini 74
B.11.1.1 Display configuration area........................... 74
B.11.1.2 Package list area........... ... i, 75
B.11.1.3 Main display action buttons......................... 75
B11.2 Menu bar. 76
B.11.3 GUIL optionsoouuiiii e 76
B.12 MACHINE-READABLE OUTPUTt 7
B.12.1 Machine-readable update and install output............ 7
B.12.2 Machine-readable option output......................... 79
B.13 ENVIRONMENT VARIABLES......, 79
B.14 AUTHORS AND COPYRIGHT ... 80
B.15 POD ERRORS ... 80

1 Introduction

This manual (dated March 2024) corresponds to the TEX Live 2024 release.

This manual is aimed at system installers and programmers, and focuses on how to
configure, build, and develop the TEX Live (TL) sources. It is also available as plain text
files in the source tree: source/README. *.

The main source/README file in the TL source tree provides maximally-terse infor-
mation for doing a build, and portability information for different systems, along with
source/doc/README.solaris.

For information on acquiring the TL sources, see https://tug.org/texlive/svn. The
canonical source repository uses Subversion, and we have no plans to change this.

This manual does not duplicate the information found in other TL documentation re-
sources, such as:

e The TEX Live web pages: https://tug.org/texlive.

e The web page describing how to build the binaries which are distributed with TEX Live:
https://tug.org/texlive/build.html.

e The TEX Live user manual: https://tug.org/texlive/doc.html, or run texdoc
texlive.

e Other TpX-related Texinfo manuals (see Web2c, Kpathsea, etc.): https://tug.org/
texinfohtml/, or check the ‘TeX’ category in the GNU Info system.

e Package documentation: https://tug.org/texlive/Contents/live/doc.html, or
the doc.html file at the top level of the installed TL.

As an exception, the full documentation for install-tl and tlmgr is included here as
appendices, simply because it is easy to do so. The same text is available online (linked
from https://tug.org/texlive/doc.html, or by invoking the program with ‘--help’ (or
look at the end of the source).

https://tug.org/texlive/svn
https://tug.org/texlive
https://tug.org/texlive/build.html
https://tug.org/texlive/doc.html
https://tug.org/texinfohtml/
https://tug.org/texinfohtml/
https://tug.org/texlive/Contents/live/doc.html
https://tug.org/texlive/doc.html

2 Overview of build system

The TEX Live build system was redesigned in 2009 to consistently use Autoconf, Automake,
and Libtool. Thus, running

configure && make && make check && make install
or the essentially-equivalent top-level Build script suffices to build and install the TL pro-
grams. The make check clause performs various tests of the generated programs—not
strictly required but strongly recommended. Running configure --help will display a
comprehensive list of all configure options.

The main components of the TL build system are:
libs/1ib Generic libraries.

texk/1ib TgEX-specific libraries in subdirectories, notably lib=kpathsea. (The other one
is texk/ptexenc.)

texk/prog
TEX-specific programs (that use Kpathsea).

utils/prog
Other programs (that don’t use Kpathsea).

The primary design goal of the build system is modularity. Each program and library
module (or package) specifies its own requirements and properties, such as required libraries,
whether an installed (system) version of a library can be used, configure options to be
seen at the top level, and more. An explicit list of all available modules is kept in a single
central place: m4/kpse-pkgs.m4.

A second, related goal is to configure and build each library before configuring any other
(program or library) module which uses that library. This allows checking for properties
and features of a library built as part of the TL tree in much the same way as for a system
version of that library.

All generic libraries and several programs are maintained independently. The corre-
sponding modules use (most of) the distributed source tree and document any modifications
of that source.

All this is for the sake of simplifying both upgrading of modules and integrating new
modules into the TL build system. (Despite all efforts, neither task is easy.)

3 Prerequisites

Overall, building the TEX Live programs, when using all libraries from the TL source tree,
requires C and C++11 compilers, GNU make, and Python.

e If make from your PATH is not GNU make, you can set the MAKE environment variable
to whatever is necessary.

GNU make is required only because of third-party libraries, notably FreeType. Au-
tomake/Autoconf output in general, and the TL-maintained directories, work with any
reasonable make.!

e A C++11 compiler is similarly required because of the third-party libraries ICU and
HarfBuzz (at least); the program dvisvgm also requires C++11. It is possible to build
what remains with older compilers, but you have to remove the C++11-dependent
sources. See Section 4.4 [Build one package], page 6.

e Python is required by ICU tests. (If you know how to disable these tests and thus
eliminate the requirement, please write.)

A few programs in the tree have additional requirements:

web2c requires perl for some tests run by make check. Incidentally, the TEX Live
installer (install-tl) and manager (tlmgr) are also written in Perl, but this
does not matter for compiling the sources.

xdvik
xpdfopen require X11 headers and libraries, typically in devel(opment) packages that are
not installed by default.

xetex requires fontconfig (again both headers and library), or, for MacOS only, the
ApplicationServices and Cocoa frameworks.

xindy requires GNU clisp, libsigsegv, and libiconv; additionally, to build the
rules and/or documentation: perl, latex, pdflatex.

Lacking the required tools, building these programs must avoided, e.g.,
configure --without-x --disable-xetex --disable-xindy

Modifying source files induces more requirements, as one might expect:

e Modification of any .y or .1 source files requires bison or flex to update the corre-
sponding C sources.

e Modification of the sources for .info files requires makeinfo.

e Modification of any part of the build system (M4 macros, configure.ac, Makefile.am,
or their fragments) requires GNU M4, GNU Autoconf, GNU Automake, and GNU
Libtool to update the generated files. Furthermore, to reliably reproduce the build

files, the original GNU releases of these tools must be used, not any distro packaging
of them. See Section 6.1 [Build system tools], page 14, for more discussion.

! There is one exception in TL: the tangle-sh and related rules use $@ to mean the target name, a feature
not present in all makes. This could be alleviated by laborious editing, but since there’s no way to avoid
GNU make for builds of the entire tree, it does not seem worth the trouble.

Chapter 3: Prerequisites 4

If you haven’t modified any source files, and infrastructure tools such as autoconf or
makeinfo are still being run, check your timestamps—mnotably, use-commit-times must be
set to yes in your Subversion configuration (see Section 6.1 [Build system tools], page 14).
No infrastructure tools are needed to do a normal build (barring bugs).

4 Building

The top-level Build script is intended to simplify building the binaries distributed with
TEX Live itself—we call this the “native” TL build. It runs configure &% make world,
which builds everything in a subdirectory of the main source tree (default Work/), installs
everything in another subdirectory (default inst/), and finally runs make check. The
exact directory and command names can be specified via environment variables and a
few leading options. All remaining arguments (assignments or options) are passed to the
configure script. Please take a look at the ./Build source file for more information; it is
a straightforward shell script.

An alternative, and the one we will mainly discuss here, is to run configure and make
in a suitable empty subdirectory. Building in the source directory itself is not supported

(sorry).

4.1 Build iteration

Running the top-level configure script configures the top level and the subdirectories libs,
utils, and texk. Running make at the top level first iterates over the TEX-specific libraries,
and then runs make in libs, utils, and texk to iterate over the generic libraries, utility
programs, and TEX-specific programs, respectively. These iterations consist of two steps:

1. For each library or program module not yet configured, run configure, adding the
configure option --disable-build if the module need not be built, otherwise running
make all.

2. For each library or program module that must be built, run make for the selected
target(s): default or all to (re-)build, check to run tests, install, etc.

Running the top-level make a second time iterates again over all the library and program
modules, and finds (should find) nothing to be done.

4.2 Build in parallel

The TL build system carefully formulates dependencies as well as make rules when a tool
(such as tangle, ctangle, and convert) creates several output files. This allows for parallel
builds (make -j nwith n > 1 or even make -j) that can considerably speed up the TL build.

If you’re using TL’s Build script, you can enable -j with the environment variable
TL_MAKE_FLAGS, as in: ‘env TL_MAKE_FLAGS=-j nproc” ./Build’.

Independently, a noticeable speed-up can also be gained by using a configure cache file,
i.e., specifying the configure option -C (recommended).

4.3 Build distribution

Running make dist at the top level creates a tarball tex-live-yyyy-mm-dd.tar.xz from
the TL source tree. Running make distcheck also verifies that this tarball suffices to build
and install all of TL.

This is useful for checking consistency of the source tree and Makefiles, but the result
is not a complete or even usable TEX system, since all the support files are lacking; see
Chapter 5 [Installing], page 11. We do not actually distribute any such tarball, and have
no plans to do so.

Chapter 4: Building 6

4.4 Build one package

To build one package, the basic idea is to use the configure option --disable-all-pkgs
(see Section 7.2.2 [--disable-all-pkgs|, page 27). Then all program and library modules
are configured but none are made. However, the Makefiles still contain all build rules and
dependencies and can be invoked to build an individual program or library, first building
any required libraries.

Here is an example from start to finish for working on dvipdfm-x. Unfortunately, this
does not suffice for building the TEX engines; see the next section.

mkdir mydir && cd mydir # new working directory

Get sources (https://tug.org/texlive/svn), e.g.:
rsync -a --delete --exclude=.svn --exclude=Work \
tug.org: :tldevsrc/Build/source/ .

Create build directory:
mkdir Work && cd Work

Do the configure:
../configure --disable-all-pkgs --enable-dvipdfm-x \
-C CFLAGS=-g CXXFLAGS=-g >&outc || echo fail

Do the make:
make >&outm || echo fail

Run the tests:
cd texk/dvipdfm-x
make check

Run the new binary in the build tree, finding support files
in a separate tree for a TeX Live release YYYY

(Bourne shell syntax):

TEXMFROOT=/usr/local/texlive/YYYY \
TEXMFCNF=$TEXMFROOT/texmf-dist/web2c \

./xdvipdfmx ...

Then you can modify source files in mydir/texk/dvipdfm-x and rerun make in
mydir/Work/texk/dvipdfm-x to rebuild; that build directory is where the binary ends up
and where you can run a debugger, etc.

The second line of the configure invocation shows examples of extra things you likely
want to specify if you intend to hack the sources (and not just build binaries): the -C
speeds configure by enabling a cache file, and the CFLAGS and CXXFLAGS settings eliminate
compiler optimization for debugging purposes.

Of course, you need to actually look at the output and check that things are work-
ing. There are many configure options you can tweak as desired; check the output from
configure —-help. It is also a good idea to run make check after making any changes, to
ensure that whatever tests have been written still pass.

https://tug.org/texlive/svn

Chapter 4: Building 7

Reducing source download size

The above retrieves the entire TL source tree (several hundred megabytes). It is natu-
ral to ask if this is really necessary. Strictly speaking, the answer is no, but it is vastly
more convenient to do so. If you cut down the source tree, you must also give additional
configure flags to individually disable using system versions of libraries, or the intricacies
of the dependencies (such as teckit requiring z1ib) will have undesired side effects. For
an example of this approach, see the build-pdftex.sh script in the pdftex development
source (details at http://pdftex.org), which is indeed such a cut-down TL source tree.

GCC used by default

By default, the gcc compilers will be used if present; otherwise, individual packages may
use something different. You can explicitly specify the compilers to be used with the envi-
ronment variables CC, CXX, and 0OBJCXX.

Removing C+11 dependency

Some libraries and programs require C++11; one such is XeTeX. If you want to build with
an older compiler lacking such support, you need to (re)move those source directories;
unfortunately, specifying --disable for them does not suffice. It’s also necessary to spec-
ify --disable-xetex explicitly. Specifically, before running configure --disable-xetex

rm -rf 1libs/icu libs/graphite2 texk/dvisvgm texk/web2c/xetexdir

Also, even with --disable-all-pkgs, dependencies are (currently) checked. One no-
table case: if a (non-MacOS) system does not have fontconfig, XeTEX cannot be built
(see Chapter 3 [Prerequisites|, page 3), and configure will terminate even with --disable-
xetex. To proceed without such dependencies, specify ——enable-missing also.

As of 2022, HarfBuzz also requires C++11. Therefore even more would have to be
disabled and removed, notably including luahbtex, the standard engine used for Lual&TEX.
Removing that would not be acceptable for builds intended for distribution; but perhaps
for testing the above information could still be useful.

In general, the TL configure will run in all directories. Therefore a general workaround
for build problems is to remove failing directories from the tree, and also specify the relevant
--disable-... option(s).

Patches to improve all this would be most welcome.

4.5 Build one engine

Unfortunately, there is one common case where the steps in the preceding section to build
one package (see Section 4.4 [Build one package], page 6) do not suffice: wanting to build
one, or a subset, of the TEX engines (or other Web2c programs).

The simplest way to do this is to disable everything and then explicitly specify what to
make. For example, to build only the original TEX:

cd Work # top build directory

../configure --without-x --disable-shared --disable-all-pkgs \
--enable-tex --disable-synctex --disable-xetex \
--enable-missing -C CFLAGS=-g CXXFLAGS=-g

http://pdftex.org

Chapter 4: Building 8

make
cd texk/web2c # cd engine build directory
make tex # must specify target

The first make run will configure everything, and even build the libraries, even though
the packages are disabled.

The source tree can be cut down to just what is needed for the given engine (the separate
pdfTEX and LuaTgX source repositories do this, for example), but see caveats in previous
section. When the --disable-xetex and --enable-missing options are needed is also
explained in the previous section.

If you want to debug an X-related program or shared library setup, or other variants,
change the configure options accordingly. Either ../Build or ../configure can be run.

Then it is necessary to again specify the target engine (tex, in the above) in the make.

All these complications are rather unfortunate. Patches are welcome.

Testing one engine

To run only the tests for a given engine, say hitex:
make -C $ww check SUBDIRS=. TESTS='$(hitex_tests)'
where $ww is the web2c build directory, that is, ww=/wherever/Build/source/Work/texk/web2c.jj
It’s also possible to run individual tests the same way, using the test name exactly as
specified in the .am file:
make -C $ww check SUBDIRS=. TESTS=hitexdir/tests/hello.test
Without the SUBDIRS=., errors like this will show up, since make will descend into every
directory.
fatal: making test-suite.log: failed to create hitexdir/tests/hello.test
If you get tired of looking at the ‘Entering’/‘Leaving directory’ lines, you can add
the (GNU) make option --no-print-dir.
You may find it useful to put lengthy incantations like this into a trivial shell script with

a short name (say, hitst). Then you just run hitst and edit the file when necessary to
change things around.

4.6 Cross compilation

In a cross compilation a build system is used to create binaries to be executed on a host
system with different hardware and/or operating system.

In simple cases, the build system can execute binaries for the host system. This typi-
cally occurs for bi-arch systems where, e.g., 1386-1inux binaries can run on x86_64-1inux
systems and win32 binaries can run on win64 systems. Although sometimes called “native
cross”, technically this is not cross compilation at all. In most such cases it suffices to spec-
ify suitable compiler flags. It might be useful to add the configure option --build=host
to get the correct canonical host name, but note that this should not be ~~host=host (see
Section “Hosts and Cross-Compilation” in GNU Autoconf).

In order to build, e.g., 32-bit binaries with clang on a 64-bit MacOS system one could
use:

TL_BUILD_ENV="CC='clang -arch i1386' \

Chapter 4: Building 9

CXX='clang++ -arch i386' \
0OBJCXX='clang++ -arch i386'" \
./Build --build=i386-apple-darwin

4.6.1 Cross configuring

In a standard cross compilation, binaries for the host system cannot execute on the build
system and it is necessary to specify the configure options —~host=host and --build=build
with two different values.

Building binaries requires suitable “cross” tools, e.g., compiler, linker, and archiver,
and perhaps a “cross” version of pkg-config and similar to locate host system libraries.
Autoconf expects that these cross tools are given by their usual variables or found under
their usual name prefixed with host-. Here a list of such tools and corresponding variables:

ar AR
freetype-config FT2_CONFIG
g++ CXX

gcc cC
icu-config ICU_CONFIG
objdump 0BJDUMP
pkg-config PKG_CONFIG
ranlib RANLIB
strip STRIP

In order to, e.g., build mingw32 binaries on x86_64-1inux with a cross compiler found as
1386-pc-mingw32-gcc one would specify
——host=1386-pc-mingw32 --build=x86_64-1linux-gnu
or perhaps
--host=mingw32 --build=x86_64-1linux CC=1i386-pc-mingw32-gcc
but this latter, especially, might require adding CXX and others.

Configure arguments such as CFLAGS=. .. refer to the cross compiler. If necessary, you
can specify compilers and flags for the few auxiliary C and C++ programs required for the
build process as configure arguments

BUILDCC=...
BUILDCPPFLAGS=. ..
BUILDCFLAGS=. ..
BUILDCXX=...
BUILDCXXFLAGS=. ..
BUILDLDFLAGS=. ..

4.6.2 Cross problems

The fact that binaries for the host system cannot be executed on the build system causes
some problems.

One problem is that configure tests using AC_RUN_IFELSE can compile and link the test
program but cannot execute it. Such tests should be avoided if possible and otherwise must
supply a pessimistic test result.

Another problem arises if the build process must execute some (auxiliary or installable)
programs. Auxiliary programs can be placed into a subdirectory that is configured natively

Chapter 4: Building 10

as is done for texk/web2c/web2c, texk/dvipsk/squeeze, and texk/xdvik/squeeze. The
module 1libs/freetype?2 uses the value of CC_BUILD, build-gcc, gcc, or cc as the compiler
for the auxiliary program.

The situation for installable programs needed by the build process is somewhat different.
A rather expensive possibility, chosen for the ICU libraries in module libs/icu, is to
first compile natively for the build system and in a second step to use these (uninstalled)
programs during the cross compilation.

This approach would also be possible for the tools such as tangle used in the module
texk/web2c to build the WEB programs, but that would require first building a native
kpathsea library. To avoid this complication, cross compilation of programs written in
(C)WEB requires sufficiently recent installed versions of tangle, ctangle, otangle, and
tie.

Building xindy requires running the host system clisp binary, thus cross compilation
is painful, but possible.

11

5 Installing

This section discusses the results of make install in the source tree.

The main consideration is that make install is not enough to make a usable TEX
installation. Beyond the compiled binaries, (thousands of) support files are needed; just as
a first example, plain.tex is not in the source tree.

These support files are maintained completely independently and are not present in the
TL source tree. The best basis for dealing with them is the TEX Live (plain text) data-
base in Master/tlpkg/texlive.tlpdb, and/or the TEX Live installer, install-t1l. More
information is under Master/tlpkg and at https://tug.org/texlive/distro.html.

5.1 Installation directories

Running make install (or make install-strip) installs executables in bindir, libraries
in 1ibdir, headers in includedir, general data (including “linked scripts”, see Section 5.2
[Linked scripts], page 11) in datarootdir/texmf-dist, man pages in mandir, and Info files
in infodir.

The values of these directories are determined by configure and can be specified explic-
itly as options such as —--prefix=prefix or --bindir=bindir; otherwise, they are given
by their usual Autoconf defaults:

prefix /usr/local
exec_prefix prefix

bindir exec_prefix/bin
libdir exec_prefix/lib
includedir prefix/include
datarootdir prefix/share
mandir datarootdir/man
infodir datarootdir/info

except possibly modified as follows:

e If the option --enable-multiplatform is given, /platform (i.e., the canonical plat-
form name) is appended to bindir and libdir. This is implied for a native TL build.

e In a native TL build, datarootdir is set to prefix, infodir is set to
prefix/texmf-dist/doc/info, and mandir to prefix/texmf-dist/doc/man,
corresponding to the directories used in the TL distribution.

The top-level configure script displays all these installation paths.

For the native TL build, the Build script leaves the binaries in ./inst/bin/std-system-
triplet. The new binaries are not directly usable from that location; they need to be copied
to Master/bin/tl-platform. The other files and directories that end up in ./inst/ are
ignored.

5.2 Linked scripts

Quite a few executables are architecture-independent shell, Perl, or other interpreted scripts,
rather than compiled binaries. A few are maintained as part of the TL source tree, but
most are maintained elsewhere with copies under texk/texlive/linked_scripts.

https://tug.org/texlive/distro.html

Chapter 5: Installing 12

These so-called linked scripts are installed under datarootdir/texmf-dist/scripts;
for Unix-like systems a symbolic link is made in bindir. For example, a symlink points from
bindir/ps2eps to datarootdir/texmf-dist/scripts/ps2eps/ps2eps.pl. For Windows,
a standard wrapper binary (copied to, e.g., bindir/ps2eps.exe) serves the same purpose.
The source for the wrapper is in texk/texlive/windows_wrapper.

One reason for this is to avoid having many copies of the same script; a more important
reason is that it guarantees the scripts will stay in sync across the different supported
operating systems.

Most important of all, we want the bindir resulting from the build to be as close as pos-
sible to what is in the TL distribution. At present, there are a few exceptions—Asymptote,
Biber, Xindy—and each one creates considerable extra work. We don’t want to add more.
(See https://tug.org/texlive/build.html for information about building those excep-
tions, as well as the xz and wget programs that are used in the TL infrastructure.)

5.3 Distro builds

Although they use the same code base, building for the native TL distribution as shipped
by the TEX user groups is typically quite different from a “distro” build needed by, e.g., a
full GNU /Linux or BSD operating system distribution.

The native TL distribution uses shared libraries only when absolutely necessary (1libc,
libm, X11 libraries, and libfontconfig). In contrast, a distro typically wants to use
as many shared libraries as possible from elsewhere on the system, including TEX-specific
libraries such as libkpathsea (even though Kpathsea has never officially been released as a
shared library). In addition, the installation paths will, in general, be completely different.

Here are the configure options that distro builds are likely to find most relevant:

--disable-native-texlive-build
This must be specified to avoid interference from the many tweaks we do for
the native TL build.

--with-banner-add=/SomeDistro
This isn’t technically required, but is strongly recommended, so your build and
your distro can be distinguished from others.

--enable-shared
Build shared versions of the TEX-specific libraries (uses 1ibtool).

--disable-static
Do not build the static versions of the TEX-specific libraries.

--with-system-1ib
Look for and use a system version of the library lib. configure --help will
give you the list of possibilities.

-—with-lib-includes=dir

--with-1ib-libdir=dir
If needed, allows you to specify where the headers/code are for the given library
lib.

https://tug.org/texlive/build.html

Chapter 5: Installing 13

--prefix=/usr

—--prefix=/opt/TeXLive
Or whatever your convention is. The default is /usr/local and you shouldn’t
install there for a distro.

--libdir=\${exec_prefix}/1ib64
May be needed for 64-bit bi-architecture (GNU/Linux) systems.

You will need to take care of the support files mentioned above (see Chapter 5 [In-
stalling], page 11), and many other issues, such as font maps, languages, and formats,
independently of the build. Norbert Preining has written a detailed article on adapting
TL for distros: https://tug.org/TUGboat/tb34-3/tb108preining-distro.pdf. (If the
article needs updating in the future, perhaps we will merge it into this document.)

https://tug.org/TUGboat/tb34-3/tb108preining-distro.pdf

14

6 Layout and infrastructure

The TEX Live source tree is the subtree rooted at Build/source of the complete TL distri-
bution and contains the sources for all executables distributed by TL, as well as configure
scripts and make rules to build and install them together with some of their support files.

6.1 Build system tools

As mentioned above (see Chapter 3 [Prerequisites|, page 3), a normal build has few re-
quirements. On the other hand, if you want to modify the TEX Live infrastructure sources,
such as configure.ac or Makefile.an files, you will need to have several additional tools
installed.

In general, the TL build system uses the latest released versions of the GNU build tools,
installed directly from the original GNU releases (e.g., by building them with configure
--prefix=/usr/local/gnu and having PATH start with /usr/local/gnu/bin). We have
found that trying to use the versions of these tools packaged for distros causes many extra
hassles, so don’t do that, tempting as it may be.

Currently the versions we use are:

autoconf (GNU Autoconf) 2.72
automake (GNU automake) 1.16.5
bison (GNU Bison) 3.8.2

flex 2.6.0

Itmain.sh (GNU libtool) 2.4.7

md (GNU M4) 1.4.19

makeinfo (GNU texinfo) 7.1

These versions should be used to update the generated files (e.g., configure or
Makefile.in) in all or parts of the TL tree after their dependencies have been changed.
This can be done explicitly with the top-level reautoconf script or implicitly by using the
configure option --enable-maintainer-mode.

It has often turned out that the bison and flex versions are not critical; however, the
autotools versions are. If you don’t have the given versions, get them before modifying the
build infrastructure.

The files in the Subversion repository (see https://tug.org/texlive/svn) are all up
to date (barring bugs). For this to be reflected by their timestamps in your checkout, be
sure to set use-commit-times=yes in "/.subversion/config or the equivalent.

If timestamps are wrong, you may also be able to avoid unnecessary runs of bison,
flex, or makeinfo with touch of the generated (.c, .h, or .info) files. With --enable-
maintainer-mode it may also be necessary to touch first aclocal.m4, then configure and
config.h.in (or c-auto.in), and finally all Makefile.in files.

6.2 Top-level directories

Here is a brief description of the top-level directories in the TEX Live source tree.

As mentioned at the beginning of see Chapter 2 [Overview of build system], page 2, the
main source directories are texk/ (TgX-specific programs and libraries), utils/ (additional
programs), and 1ibs/ (generic libraries).

https://tug.org/texlive/svn

Chapter 6: Layout and infrastructure 15

In addition, the top-level directories am/ and m4/ contain Makefile.am fragments and
Autoconf macros, respectively, used in many places. Specifically, the file m4/kpse-pkgs .m4
contains lists of all program and library modules; missing modules are silently ignored.
(This helps in creating cut-down source trees.)

Each module contributes fragments (in separate files) defining its capabilities and re-
quirements to the configure.ac scripts at the top-level and in the subdirectories libs,
utils, and texk. The fragments from program modules supply configure options to dis-
able or enable building them; those from library modules specify if an installed (system)
version of that library can be used. This ultimately determines which modules need to be
built—although all modules must be configured for the benefit of make targets such as dist
or distcheck.

The top-level build-aux/ directory contains the common files compile, config.guess,
config.sub, depcomp, etc. used by most packages. These are taken from the GNU Gnulib
sources (https://www.gnu.org/software/gnulib), which in turn synchronizes with any
ultimate upstream repository. There are independent copies of some of these in a few other
places, e.g., libs/freetype2/freetype-*/builds/unix/. The reautoconf script does not
touch those, but a TL cron job keeps them in sync (nightly).

When the top-level ./Build script is used to build TL, two more two more top-level
directories appear: Work/ for the build tree, and inst/ for the install tree (from make
install). These names (and everything else about Build’s operation) can be changed by
setting environment variables before running it; see the script source.

6.3 Autoconf macros

Here we describe a few of the Autoconf macros used in several modules—many more are de-
fined in the sources; see the top-level m4/ directory. These general macros are supplemented
by module-specific macros in directories such as texk/dvipng/m4/; some of those are de-
scribed in following sections (see Section 6.4 [Library modules], page 18, and Section 6.5
[Program modules], page 20).

6.3.1 General setup macros

The TL sources use two general setup macros:

KPSE_BASIC (name, [more-options)) [Macro]
Initialize the basic TL infrastructure for module name:
AM_INIT_AUTOMAKE([foreign more-options])
AM_MAINTAINER_MODE
KPSE_COMPILER_WARNINGS
and make sure the C compiler understands function prototypes. This is used for all
generic library and program modules.

KPSE_COMMON (name, [more-options]) [Macro]
Like KPSE_BASIC but add:
LT_PREREQ([2.2.6])
LT_INIT([win32-d11])
AC_SYS_LARGEFILE
AC_FUNC_FSEEKO

https://www.gnu.org/software/gnulib

Chapter 6: Layout and infrastructure 16

along with checks for frequently used functions, headers, types, and structures. This
is used for TEX-specific modules.

6.3.2 Macros for programs

Macros for program checks:

KPSE_CHECK_LATEX [Macro]
Set LATEX to the first of latex, elatex, or lambda which exists in PATH, or to no if
none of them exists. Call AC_SUBST for LATEX. The result of this test can be overridden
by setting the LATEX environment variable or the cache variable ac_cv_prog_LATEX.

KPSE_CHECK_PDFLATEX [Macro]
Check for pdflatex in PATH and set PDFLATEX.

KPSE_CHECK_PERL [Macro]
Check for perl or perl5 in PATH and set PERL.

KPSE_PROG_LEX [Macro]
Call AC_PROG_LEX and add the flag -1 for flex.

6.3.3 Macros for compilers

Macros for compiler-related checks:

KPSE_COMPILER_WARNINGS [Macro]
When wusing the (Objective) C/C++ compiler, set WARNING_[0BJ]C[XX]FLAGS
to suitable warning flags (depending on the value given to or implied for
--enable-compiler-warnings). Call AC_SUBST for them. At present this assumes
GNU compiler warning options, but could be extended to others if necessary.

This macro caches its results in the kpse_cv_warning_cflags, ... variables.

KPSE_COMPILER_VISIBILITY [Macro]
When using the C or C++ compiler, try to set VISIBILITY_C[XX]FLAGS to flags to
hide external symbols. Call AC_SUBST for this variable. At present this only tests for
the compiler option -fvisibility=hidden, but could be extended if necessary.

This macro caches its results in the kpse_cv_visibility_cflags or kpse_cv_
visibility_cxxflags variable.

KPSE_CXX_HACK [Macro]
Provide the configure option --enable-cxx-runtime-hack. If enabled and when
using g++, try to statically link with 1ibstdc++, notably improving portability of the
resulting binary.

This macro caches its result in the kpse_cv_cxx_hack variable.

6.3.4 Macros for libraries
One macro for a library check:
KPSE_LARGEFILE (variable, [extra-define)) [Macro]

Call AC_SYS_LARGEFILE and AC_FUNC_FSEEKO and append suitable -D flags (option-
ally including -Dextra-define) to variable.

Chapter 6: Layout and infrastructure 17

6.3.5 Macros for library and header flags

Each library module 1ibs/1ib or texk/1ib is supplemented by a macro KPSE_LIB_FLAGS
(all uppercase) that provides make variables for that library. E.g., for 1ibs/libpng:

KPSE_LIBPNG_FLAGS [Macro]
Provide the configure option --with-system-1libpng. Set and AC_SUBST make vari-
ables for modules using this library (either an installed version or from the TEX Live

tree):

LIBPNG_INCLUDES for use in CPPFLAGS,

LIBPNG_LIBS for use in LDADD,

LIBPNG_DEPEND for use as a Makefile dependency,
LIBPNG_RULE for the make rules to rebuild the library.

KPSE_ADD_FLAGS (name) [Macro]
Temporarily extend CPPFLAGS and LIBS with the values required for the library mod-
ule name.

KPSE_RESTORE_FLAGS [Macro]

Restore CPPFLAGS and LIBS to their original values.

As an example, the configure.ac file for a hypothetical program utils/foo using
libpng, and hence z1ib, would contain

KPSE_ZLIB_FLAGS
KPSE_LIBPNG_FLAGS

and its Makefile.am would be along these lines:

bin_PROGRAMS = foo

AM_CPPFLAGS = ${LIBPNG_INCLUDES} ${ZLIB_INCLUDES}
foo_LDADD = ${LIBPNG_LIBS} ${ZLIB_LIBS}
foo_DEPENDENCIES = ${ZLIB_DEPEND} ${LIBPNG_DEPEND}
Rebuild libz

@ZLIB_RULEQ

Rebuild libpng

@LIBPNG_RULE®

If it were necessary to examine whether certain z1ib or libpng features were available,
configure.ac should be continued this way:

KPSE_ADD_FLAGS ([z1ib])

. # tests for z1ib features, if any
KPSE_ADD_FLAGS([libpng])

. # tests for libpng features
KPSE_RESTORE_FLAGS # restore CPPFLAGS and LIBS

6.3.6 Macros for Windows

Windows differs in several aspects from Unix-like systems, many of them due to the lack of
symbolic links.

Chapter 6: Layout and infrastructure 18

KPSE_CHECK_WIN32 [Macro]
Check if compiling for a Windows system. The result is either no for Unix-like systems
(including Cygwin), mingw32 for Windows with GCC, or native for Windows with
MSVC. The result is cached in the kpse_cv_have_win32 variable.

KPSE_COND_WIN32 [Macro]
Call KPSE_CHECK_WIN32 and define the Automake conditional WIN32 (true if the value
of kpse_cv_have_win32 is not no).

KPSE_COND_MINGW32 [Macro]
Call KPSE_COND_WIN32 and define the Automake conditional MINGW32 (true if the
value of kpse_cv_have_win32 is mingw32).

KPSE_COND_WIN32_WRAP [Macro]
Call KPSE_COND_WIN32 and define the Automake conditional WIN32_WRAP (true if
the standard Windows wrapper (texk/texlive/windows_wrapper/runscript.exe)
exists. This wrapper is used on Windows instead of symlinks for the “linked scripts”
(see Section 5.2 [Linked scripts]|, page 11).

KPSE_WIN32_CALL [Macro]
Call KPSE_COND_WIN32 and check if the file texk/texlive/windows_
wrapper/callexe.c exists; if it does, create a symlink in the build tree. Compiling
callexe.c with -DEXEPROG='"foo.exe"' and installing callexe.exe as bar.exe is
used on Windows instead of a symlink bar->foo for Unix-like systems.

6.4 Library modules

Here we discuss some specifics for a few of the libraries in TL, both for the details themselves,
and as a way of illuminating the general structure and variation.

6.4.1 The png library in libs/libpng

The “generic” png library uses the source tree in the subdirectory libpng-src/,
with all modifications for TL recorded in TLpatches/*. The configure.ac fragment
ac/withenable.ac contains

KPSE_WITH_LIB([libpng], [zlibl)

to specify the module name and indicate the dependency on zlib. A third literal argument
‘tree’ would specify that the library from the TEX Live tree cannot be replaced by a system
version. That not being the case here, a second fragment ac/libpng.ac contains
KPSE_TRY_LIB([libpng],
[#include <png.h>],
[png_structp png; png_voidp io; png_rw_ptr fn;
png_set_read_fn(png, io, fn);])
thus providing the simple C code

#include <png.h>

int main ()

{ png_structp png; png_voidp io; png_rw_ptr fn;
png_set_read_fn(png, io, fn);

Chapter 6: Layout and infrastructure 19

return 0; }

which Autoconf uses to verify the usability of a system version with C code. The analo-
gous macro KPSE_TRY_LIBXX would check using C++. These fragments are included by the
configure.ac at the top level of TL (Build/source/configure.ac).

For this library, like many other modules, a proxy build system for TL is used, consist-
ing of our own configure.ac, Makefile.am, include/Makefile.am; the distributed build
system is not used. (Consequently, a few generated files and auxiliary scripts are removed
from the distributed source tree.)

The public headers png.h, pngconf.h, and pnglibconf.h are “installed” (as symlinks)
under include/ in the build tree exactly as they are for a system version under, e.g.,
/usr/include/.

The module is supplemented by the file m4/kpse-1libpng-flags.m4 that defines the
M4 macro KPSE_LIBPNG_FLAGS used by all modules depending on this library in their
configure.ac to generate the make variables LIBPNG_INCLUDES for use in CPPFLAGS,
LIBPNG_LIBS for use in LDADD, LIBPNG_DEPEND for use as dependencies, and LIBPNG_RULE
for the make rules to rebuild the library.

m4/kpse-libpng-flags.m4 also supplies the configure option --with-system-1ibpng,
which then uses pkg-config to determine the flags required for the system library.

6.4.2 The z1ib library in 1libs/zlib

This generic library is very much analogous to 1ibpng, but without the dependency on
any other library. The file m4/kpse-z1lib-flags.m4 supplies the configure option —--with-
system-z1lib, as well as ——with-zlib-includes and --with-zlib-1libdir to specify non-
standard locations of the z1ib headers and/or library.

6.4.3 The freetype library in libs/freetype2

This module uses a wrapper build system. In contrast to the proxy build described earlier,
the wrapper build has an almost trivial configure.ac and a Makefile.am which invokes
the configure and make in the distributed source, followed by make install with the TL
build tree as destination. In other words, this actually uses the build system provided by
upstream (possibly patched).

The flags required for the system library are obtained through freetype-config.

6.4.4 The kpathsea library in texk/kpathsea

This is one of the TEX-specific libraries that are maintained as part of TEX Live (see Kpath-
sea (tug.org/kpathsea)); the other is ptexenc. These TEX libraries are Libtool libraries
(static and/or shared) and are installed by make install together with the programs. They
are, however, not part of the TL DVD as distributed by TEX user groups, and have never
been officially released for standalone use.

It is possible, and probably useful for distro builds (see Section 5.3 [Distro builds],
page 12), to specify the configure option --with-system-kpathsea in order to use a system
version of the library. Programs outside the TL tree should use pkg-config for the required
flags.

In addition to kpathsea/ac/withenable.ac and kpathsea/ac/kpathsea.ac here
there is a third fragment kpathsea.ac/mktex.ac, included by both withenable.ac and

tug.org/kpathsea

Chapter 6: Layout and infrastructure 20

configure.ac, which supplies configure options such as --enable-mktextfm-default.
These determine the compile time default of whether or not to run mktextfm (and similar)
to generate a missing .tfm (or whatever) file. In any case, however, the command line
options —mktex=tfm or —-no-mktex=tfm for the TEX-like engines override this default.

6.5 Program modules

As with libraries (see Section 6.4 [Library modules]|, page 18), here we discuss the details
for a few of the programs in TL.

6.5.1 The tlutils package in utils/tlutils

Here we use the distributed source tree tlutils-src with modifications documented in
TLpatches/* and a proxy build system consisting of configure.ac and Makefile.am. The
fragment ac/withenable.ac contains

KPSE_ENABLE_PROG([tlutils])

specifying the module name without any dependencies, and supplies the configure option
--disable-tlutils.

6.5.2 The xindy package in utils/xindy

This module uses the distributed source tree xindy-src/ with modifications documented in
TLpatches/*, and a wrapper configure.ac and Makefile.am that descends into xindy-
src.

The xindy build requires a make that supports a VPATH build, can handle all
targets, and does not refer to ${top_srcdir} or ${top_builddir}. The fragment
xindy/ac/withenable.ac contains

KPSE_ENABLE_PROG([xindy], , [disablel)
m4_include (kpse_TL[utils/xindy/ac/xindy.ac])
m4_include (kpse_TL[utils/xindy/ac/clisp.ac])

where disable in the third argument indicates that xindy is only built if explicitly enabled
by the user with configure --enable-xindy (the need for clisp makes it too painful to
enable by default).

The additional fragments ac/xindy.ac and ac/clisp.ac specify more configure op-
tions to be seen at the top level, with ac/xindy.ac also included by configure.ac.

6.5.3 The xdvik package in texk/xdvik

This package is maintained as part of the TEX Live tree with sources in its own directory
(texk/xdvik/). The fragment xdvik/ac/withenable.ac contains

dnl extra_dirs = texk/xdvik/squeeze
KPSE_ENABLE_PROG([xdvik], [kpathsea freetype2], [x])
m4_include (kpse_TL[texk/xdvik/ac/xdvik.ac])

thus specifying dependencies on the kpathsea, freetype, and X11 libraries. The M4
comment (following dnl) signals the subsidiary squeeze/configure.ac. This is needed
because the main executable xdvi-bin (to be installed as, e.g., xdvi-xaw) is for the host
system whereas the auxiliary program squeeze/squeeze has to run on the build system:;
in a cross compilation, these differ.

Chapter 6: Layout and infrastructure 21

The additional fragment ac/xdvik.ac is also included by configure.ac and supplies
the configure option ——with-xdvi-x-toolkit also seen at the top level.

6.5.4 The subdirectory utils/asymptote

This subdirectory contains the sources for asy and xasy but due to its complexity and
prerequisites (e.g., OpenGL) it is not part of the TL build system. These programs must
be built and installed independently, but are included on the TL DVD together with their
support files. See https://tug.org/texlive/build.html#asymptote.

6.6 Extending TEX Live

This section outlines the basic process for adding new packages to the TL build system.

In any case, a new package directory foo should contain the original sources, modified
only with changes necessary for TL, in foo/foo-src. The changes should be documented
in foo/TLpatches/*, and also be submitted upstream whenever reasonable. In addition,
foo/ will need the usual Automake build-related files (configure.ac, Makefile.am, etc.
Please maintain foo/ChangeLog for all TL changes.

6.6.1 Adding a new program module

A TgX-specific program module in a subdirectory texk/prog may use the TEX-specific
libraries and is included by adding its name prog to the M4 list kpse_texk_pkgs defined
in m4/kpse-pkgs .m4.

A generic program module in a subdirectory utils/prog must not use the TEX-specific
libraries and is included by adding its name prog to the M4 list kpse_utils_pkgs in
m4/kpse-pkgs .m4.

In either case, the subdirectory texk/prog or utils/prog must provide a fragment
ac/withenable.ac that contains the M4 macro KPSE_ENABLE_PROG defined in m4/kpse-
setup.m4 with prog as the mandatory first argument and three optional arguments:

1. a list of required libraries from the TL tree;

2. a list of options: disable if this module is not to be built without the configure option
-—enable-prog, native if cross compilation is not possible, x if the program requires
X11 libraries;

3. a comment added to the help text for the configure option --enable-prog or
--disable-prog.

If the module requires specific configure options to be seen at the top level, they
should be defined in an additional fragment ac/prog.ac included from ac/withenable.ac
and configure.ac.

Usually, the new program is maintained somewhere outside of TEX Live. In that
case, as above, we put the upstream sources into a subdirectory prog-src (e.g.,
utils/newprog/newprog-src). We do not typically run configure in this original
. ..—src directory, but only in our own directory; but we do compile using the source files
in ...-src.

So, to summarize the files that must (usually) be created inside a new TL source directory
(texk/newprog or utils/newprog):

https://tug.org/texlive/build.html#asymptote

Chapter 6: Layout and infrastructure 22

ac/withenable.ac
The KPSE_ENABLE_PROG call just explained.

configure.ac

Makefile.am
By merging the contents of the original configure.ac (if provided) and a com-
parable program already in TL. In the above example, one line that will be
needed in configure.ac (can be added before the AC_CONFIG_FILES at the
end) is:

AC_SUBST([NEWPROG_TREE], [newprog-srcl)

and then use GNEWPROG_TREEQ in Makefile.am where needed.

In general, there is no magic recipe for this part of the job. It’s necessary to
think about what needs to be done in the original vs. in TEX Live. It’s useful
to look at the setup for the most comparable programs already in TL that you
can find. It’s also useful to grep the entire Build/source tree for whatever
you can think of to investigate how something is done. Most of the TL-specific
macros are defined in Build/source/m4/*.

TLpatches/TL-Changes
First actions taken after getting the original source tree; typically removal of
derived or unused common files.

TLpatches/patch-. ..
If any changes are needed to the original sources, record the patches here so
they can be applied next time. Also, send them upstream so that we don’t have
to maintain them forever.

ChangelLog
Record all TL-specific changes, now and in the future.

After populating the new TL source directory (. ../newprog/, in the above), run GNU
autoreconf there (see Section 6.1 [Build system tools], page 14). Once that works, if
you are the one who’s eventually going to commit the new package, svn add the necessary
files, including the generated Makefile.in aclocal.mé4 configure, and svn:ignore the
Automake cache automdte.cache. (This is so people checking out the TL source tree do
not have to run any autotools, but can simply run configure.)

To reiterate: do not fail to commit the generated configure and other files. The m4
code in kpse-pkgs.m4 uses the existence of configure to determine whether to descend
into (and configure) a given subdirectory.

Then, run the TL tool reautoconf in the top-level TL Build/source/ directory, to
incorporate the new program into the build tree. It is good to then rebuild the whole tree
(e.g., using TL’s Build/Build script) to get all the necessary files generated.

It will probably fail. So then you need to keep at it until the program compiles and tests
successfully. The most efficient way is to rerun autoreconf as needed in the new source
directory (Build/source/.../newprog), then make in the corresponding build directory
(Build/work/.../newprog), then make check, etc. In the end, also make sure that the
whole tree builds from scratch.

After final success, don’t forget to commit. (Or email the TL maintainers with the
patch.)

Chapter 6: Layout and infrastructure 23

6.6.2 Adding a new engine

Adding a new TEX engine is not completely different from adding a program, but it’s not
all that similar, either. In this case, the main work is done by creating a new subdirectory
of texk/web2c/ for the engine. The subdirectory is conventionally named ending in dir,
like pdftexdir and xetexdir, to avoid clashes with executable names.

The source files for the new engine should be put in this newenginedir subdirectory.
Also, a file newenginedir/am/newengine.am (e.g., pdftexdir/am/pdftex.am is needed
with the Makefile fragment needed to build it.

The overall web2c/Makefile.am needs to have an include statement added to insert
that newengine.an file.

In web2c/ac/web2c. ac, a line needs to be added in the definition of the kpse_tex_progs
variable to include it in the build. That line specifies whether the new engine is built by
default, and the additional libraries requires.

For examples of building engines in CWEB, you can check the existing hitexdir and
mplibdir directories; these are somewhat simpler than LuaTgX. Of course, every engine
will have its own unique features and requirements, so existing examples will only take you
so far.

Web2c is built as one “package”, with each subdirectory’s .am fragment inserted with
an Automake include. This means that, for instance, $(srcdir) is .../web2c, not
.../webdir/enginedir. It is a difficult setup to come to terms with, but the alterna-
tive is to recurse into each engine subdirectory, and that would be far worse (see Section
“Directories” in GNU Automake).

6.6.3 Adding a new generic library module

A generic library module in a subdirectory libs/1ib must not depend on TgX-specific
libraries, by definition. It is included by adding its name 1ib to the M4 macro kpse_libs_
pkgs in m4/kpse-pkgs.m4d—before any other libraries from the TEX Live tree on which it
depends.

As with program modules, the subdirectory libs/1ib must contain the sources
and build system for the library (and any installable support programs) and a
fragment ac/withenable.ac that contains the M4 macro KPSE_WITH_LIB defined in
mé4/kpse-setup.mé with 1ib as the mandatory first argument and two optional arguments:
a list of required libraries from the TL tree, and a list of options: for libraries, currently
there is only one—specify tree if this library cannot be replaced by a system version.

If a system version can be used, a second fragment ac/1ib.ac is needed, containing the
M4 macro KPSE_TRY_LIB (or KPSE_TRY_LIBXX) with 1ib as the mandatory first argument
and two additional arguments for the Autoconf macro AC_LANG_PROGRAM used to compile
and link a small C (or C++) program as sanity check for using the system library.

In addition a file m4/kpse-1ib-flags (at the top level) must define the M4 macro
KPSE_LIB_FLAGS (all uppercase) setting up the make variables LIB_INCLUDES, LIB_LIBS,
LIB_DEPEND, and LIB_RULE with the values required for CPPFLAGS, LDADD, dependencies,
and a (multi-line) make rule to rebuild the library when necessary. All of that is needed for
the library from the TL tree and, if supported, for a system version.

If a system library is allowed, KPSE_LIB_FLAGS also provides the configure option
--with-system-1ib and uses the additional M4 macro KPSE_LIB_SYSTEM_FLAGS to

Chapter 6: Layout and infrastructure 24

generate the make variables for a system library. In addition, the definition of the M4
macro KPSE_ALL_SYSTEM_FLAGS in m4/kpse-pkgs.m4 must be extended by the line:
AC_REQUIRE([KPSE_LIB_SYSTEM_FLAGS])

6.6.4 Adding a new TgX-specific library module

A TgX-specific library module in a subdirectory texk/1ib may depend on other TEX-specific
libraries but must not depend on any generic library from the TL tree. It is included in the
same general ways as a generic library (see the previous section), with these modifications:
e The library name 1ib is added to the M4 macro kpse_texlibs_pkgs, which is also in
m4/kpse-pkgs .m4.
e The fragment ac/withenable.ac must use KPSE_WITH_TEXLIB.

25

7 Configure options

Corresponding to the large number of program and library modules there are a large number
configure options, most of which are described here. The command

configure --help
at the top level gives an exhaustive list of all global options and a few important module-
specific ones, whereas, e.g.,

texk/lcdf-typetools/configure --help
also displays the 1cdf-typetools specific options, which are not shown at the top level.

The help text also mentions several influential environment variables, but for TEX Live
it is better to specify them as assignments on the command line.

The ./Build script used to make the binaries shipped with TEX Live invokes the top-
level configure with a few additional options (see Chapter 4 [Building], page 5). The
defaults discussed below are those for the actual configure script; invoking configure via
./Build yields different results.

Defaults for most options are set at the top level and propagated explicitly to all sub-
directories. Options specified on the command line are checked for consistency but never
modified.

7.1 Global configure options

Here are the global configure options.

7.1.1 --disable-native-texlive-build

If enabled (the default), build for a TL binary distribution as shipped by the TEX user
groups. This requires GNU make and implies -—enable-multiplatform and --enable-
cxx-runtime-hack (unless they are explicitly disabled), and enforces --disable-shared.

If building TL for a GNU/Linux or other distribution, this should be disabled and system
versions of most libraries should be used (see Section 5.3 [Distro builds|, page 12).

A related option, -—enable-texlive-build, is automatically passed to all subdirectories
(and cannot be disabled). Subdirectories that can also be built independently from the TL
tree (such as utils/xindy and texk/dvipng) but cooperate with TL can use this option
to enable TL-specific adaptations, such as installation paths.

7.1.2 --prefix, --bindir, ...
These standard Autoconf options specify various installation directories as usual. For the
complete list, see Section 5.1 [Installation directories|, page 11.

Also as usual, all values are prefixed by the value of DESTDIR, if set, on the make command
line (see Section “Installation in a temporary location” in GNU Automake).

7.1.3 --disable-largefile

Omit large file support (LFS), which is needed on most 32-bit Unix systems for files with
2GB or more. Regardless of this option, the size of DVI and GF files must always be < 2GB,
due to the file format specifications.

With LFS, there is no fixed limit on the size of PDF files created by pdftex or PostScript
files created by dvips.

Chapter 7: Configure options 26

7.1.4 --disable-missing

Immediately terminate the build process if a requested program or feature must be disabled,
e.g., due to missing libraries. This can help when figuring out a specific (sub)set of modules
to enable.

7.1.5 --enable-compiler-warnings=Ilevel

Enable various levels of compiler warnings for C, C++, and/or Objective C: the level value
can be one of: no min yes max all. The default is yes in maintainer-mode (see below)
and min otherwise. This option defines the variables WARNING_ [0BJ]C [XX]FLAGS, but these
variables are not consistently used in all library and program modules. At present, these
warning flags assume options from the GNU compilers.

7.1.6 -—-enable-cxx-runtime-hack

If enabled (as it is for the native TL build), when using g++, try to statically link with
libstdc++, thus improving portability of the resulting binary. See Section 6.3.3 [Macros
for compilers|, page 16.

7.1.7 —-—enable-maintainer-mode

Enable make rules and dependencies not useful (and sometimes confusing) to the casual
user. This requires current versions of the GNU build tools (see Section 6.1 [Build system
tools|, page 14), as it automatically rebuilds infrastructure files as needed. See Section
“missing and AM_MAINTAINER_MODE” in GNU Automake.

7.1.8 --enable-multiplatform

If enabled (as it is for the native TL build) and --bindir=dir or --libdir=dir are not
specified, install executables and libraries in per-platform subdirectories of eprefix/bin
and eprefix/1ib where eprefix is the value given or implied for exec_prefix. In any case,
the values for bindir and 1ibdir are automatically propagated to all subdirectories.

7.1.9 —--enable-shared

Build shared versions of the TEX-specific libraries such as 1ibkpathsea. This is not allowed
for a native TL build (i.e., ~—~disable-native-texlive-build must also be specified).

7.1.10 --enable-silent-rules

Enable the use of less verbose build rules. When using GNU make (or any make implemen-
tation supporting nested variable expansions), you can specify V=1 on the make command
line to get more verbosity, or V=0 to get less, regardless of this option.

7.1.11 --without-1n-s

Required when using a system without a working 1n -s to build binaries for a Unix-like
system. However, make install will not create anything useful, and might fail.

7.1.12 --without-x

Disable all programs using the X Window System.

Chapter 7: Configure options 27

7.2 Program-specific configure options

Here are (some of) the program-specific configure options.

7.2.1 --enable-prog, --disable-prog
Do or do not build and install the program(s) of module prog.

7.2.2 --disable-all-pkgs

Do not build any program modules by default—only those explicitly enabled. This is useful
when one wants to work on only a single program, which is specified with an additional
--enable option, e.g., ——enable-dvipdfm-x. It’s still simplest to check out and config-
ure the whole source tree, but at least only the program you are interested in, and its
dependencies, are built. See Section 4.4 [Build one package], page 6.

Without this option, all modules are built except those that are explicitly disabled or
specify disable in their ac/withenable.ac fragment.

7.2.3 Configure options for texk/web2c

--with-banner-add=str

Add str to the default version string (which is ‘TeX Live year’ or ‘Web2C year’) appended
to banner lines. This is ignored for a native TL build, but distro builds should specify, e.g.,
/SomeDistro.

--with-editor=cmd
Specify the command cmd to invoke from the e option of TEX and friends, replacing the
default vi +%d '%s' for Unix or texworks —-position=%d "%s" for Windows.

--with-fontconfig-includes=dir, -—with-fontconfig-libdir=dir

Building XeTEX on non-Mac systems requires the fontconfig library headers and code. If
one or both of these options are given, the required flags are derived from them; otherwise,
they are determined via pkg-config (if present).

--with-mf-x-toolkit

Use the X toolkit (1ibXt) for Metafont (the default is to use the lowest-level X1ib support;
it seems this has the best chance of working across X installations nowadays).

--disable-dump-share

Make the fmt/base dump files architecture dependent (somewhat faster on LittleEndian
architectures).

—--disable-ipc

Disable TEX’s ——ipc option.

--disable-mf-nowin

Do not build a separate non-graphically-capable Metafont (mf-nowin).

--disable-tex, -—enable-etex, ...

Do not or do build the various TEX, Metafont, and MetaPost engines (defaults are defined
in the fragment texk/web2c/ac/web2c.ac).

--disable-web-progs

Do not build the original WEB programs bibtex, ..., weave. Useful if, e.g., you only want
to (re)build some engines.

Chapter 7: Configure options 28

-—enable-auto-core
This option causes TEX and Metafont to produce a core dump when a particular hacky
filename is encountered, for use in creating preloaded binaries. This is rarely done nowadays.

-—enable-libtool-hack
If enabled (which is the default for all platforms), prevents 1ibtool from linking explicitly
with dependencies of libfontconfig such as libexpat.

-—enable-*win
Include various types of non-X window support for Metafont (EPSF output, mftalk, old
graphics terminals, .. .).

--enable-tex-synctex, --disable-etex-synctex, ...
Build the TEX engines with or without SyncTeX support; ignored for a native TEX Live
build. Defaults are defined in texk/web2c/ac/web2c.ac.

--disable-synctex
Do not build the SyncTeX library and tool.

7.2.4 Configure options for texk/bibtex-x

The programs bibtex8 and bibtexu have been merged into the module bibtex-x (extended
BibTEX).

--disable-bibtex8

Do not build the bibtex8 program.

--disable-bibtexu
Do not build the bibtexu program (building bibtexu requires ICU libraries).

7.2.5 Configure options for texk/dvipdfm-x

The former modules dvipdfmx (extended DVI to PDF converter) and xdvipdfmx (the same,
as used by XeTgX) have been merged into dvipdfm-x at the source level. Two separate bi-
naries are still created by default. In addition, dvipdfm is created as a symlink to dvipdfmx,
with backward-compatible (very slightly different) behavior.

--disable-dvipdfmx
Do not build the dvipdfmx program or make the dvipdfm symlink.

--disable-xdvipdfmx
Do not build the xdvipdfmx program.

7.2.6 Configure options for texk/dvisvgnm

--with-system-libgs

Build dvisvgm using installed Ghostscript (gs) headers and library (not allowed for a native
TL build). The default is to load the gs library at runtime if possible, else to disable support
for PostScript specials.

--without-1libgs

Build dvisvgm without PostScript support at all. Because the dynamic loading just men-
tioned defeats all attempts at static linking, the result can crash due to library incompati-
bilities, e.g., on CentOS 5.

--with-libgs-includes=dir, --with-libgs-libdir=dir

Specify non-standard locations of the Ghostscript headers and library.

Chapter 7: Configure options 29

7.2.7 Configure options for texk/texlive

--disable-linked-scripts
Do not install the “linked scripts” (see Section 5.2 [Linked scripts]|, page 11), except for the
TL scripts required to run texlinks.

7.2.8 Configure options for texk/xdvik

--with-gs=filename

Hardwire the location of Ghostscript (gs) as called by Xdvik.
--with-xdvi-x-toolkit=kit

Use toolkit kit for xdvik, one of: motif xaw xaw3d neXtaw. The default is motif if avail-
able, else xaw.

-—enable-xi2-scrolling
Use XInput 2.1 “smooth scrolling” if available (default: yes, except for a native TL build).

7.2.9 Configure options for utils/xindy
—--enable-xindy-rules
Build and install xindy rules (default: yes, except for a native TL build).

--enable-xindy-docs

Build and install xindy documentation (default: yes, except for a native TL build).
--with-clisp-runtime=filename

Specifies the full path for the Clisp runtime file (1isp.run or lisp.exe) to be installed.
When specified as default (the default for a native TL build) the path is determined by
the Clisp executable; the value system (not allowed for a native TL build, but the default
otherwise) indicates that xindy will use the installed version of clisp (which must be
identical to the one used to build xindy).

7.3 Library-specific configure options

Here are (some of) the library-specific configure options, starting with this generic one:
--with-system-1ib
Use an installed (system) version of the library 1ib; this option exists for most libraries,

but is not allowed for a native TL build. Using a system version implies also using the
system versions of all libraries that lib depends on.

For many libraries ——with-lib-includes=dir and --with-1ib-libdir=dir can specify
non-standard search locations; others use pkg-config or similar to determine the required
flags.

The top-level configure script performs a consistency check for all required system
libraries and bails out if tests fail.

7.3.1 Configure options for kpathsea

-—enable-cmd-default, --disable-cmd-default
Determine the compile time default for whether or not to run c¢md, which is one of:

mkocp (Omega compiled translation process file)

mkofm (Omega font metrics file)

Chapter 7: Configure options 30

mktexfmt (format/base dump file)

mktexpk PK bitmap font)
mktextex (TEX source)
mktextfm (TFM file)

(

mktexmf (Metafont source)
(
(

to generate the specified type of file dynamically. The default can be overridden by the user
in any case (see Section 6.4.4 [kpathsea library], page 19).

7.4 Variables for configure

The values for these variables can be specified as configure arguments of the form
VAR=value. They can also be defined in the environment, but that might not work for
cross compilations.

CcC
CXX
CPPFLAGS And plenty more. As usual with Autoconf, these variables specify the name

(or full path) of compilers, preprocessor flags, and similar. See Section “Preset
Output Variables” in GNU Autoconf.

CLISP Name (or full path) of the clisp executable, used to build xindy.

FT2_CONFIG

ICU_CONFIG

PKG_CONFIG
These specify the name (or path) for the freetype-config, icu-config, and
pkg-config commands used to determine the flags required for system versions
of 1libfreetype, the ICU libraries, and other libraries, respectively.

KPSEWHICH
Name (or path) of an installed kpsewhich binary, used by make check to de-
termine the location of, e.g., cmbx10.tfm.

MAKE

SED And more. Name (or path) of the make, sed, and similar programs; used at the
top level and propagated to all subdirectories.

PERL

LATEX

PDFLATEX Name (or full path) for the perl, latex, and pdflatex commands used, e.g.,
to build the xindy documentation.

31

8 Coding conventions

Ideally, building all of TEX Live with ——enable-compiler-warnings=max should produce
no (GCC) compiler warnings at all. In spite of considerable efforts into that direction we
are still far from that goal and there are reasons that we may never fully reach it. Below
are some rules about declarations of functions or variables and the use of const. These
rules should be applied to the code maintained in the TEX Live tree and for other packages
whose maintainers are willing to accept patches.

8.1 Declarations and definitions

C standards

The TEX Live build system no longer supports pre-ANSI C compilers. Thus all function
prototypes and definitions must conform to the ANSI C standard (including void in the
declaration of C functions with no parameters). On the other hand, TL is built for a
wide variety of systems, not all of which support the C99 standard. Therefore using C99
features should be avoided if that can easily be done. In particular, C code must not contain
declarations after statements or C++-style comments.

If some C99 (or later) constructs must be used, the module should verify that they are
available and otherwise provide an alternative. For example, the module texk/chktex uses
the C99 function stpcpy() that may or may not be available on a particular system. It
uses AC_CHECK_DECLS ([stpcpy]) in configure.ac to test this, and provides a perhaps less
efficient alternative (in the file Utility.h):

#if !(defined HAVE_DECL_STPCPY && HAVE_DECL_STPCPY)
static inline char *stpcpy(char *dest, const char *src)
{

return strcpy(dest, src) + strlen(src);
b
#endif

Static functions

Functions used in only one file should be declared static; they require no prototype except
in forward declarations.

Extern functions

Functions not declared static, usually because they are used in several files, require an
(extern) prototype in exactly one header file, which is included in the file defining the
function and in all files using that function—this is the only way to guarantee consistency
between definition and use. There should be no extern declarations sprinkled throughout
the C code (with or without comments as to where that function is defined).

Variable declarations

The declaration of global variables follows analogous rules: they are either declared static
if used in only one file or declared extern in exactly one header and instantiated in exactly
one file.

Chapter 8: Coding conventions 32

8.2 Const

The const feature of C is valuable, but easy to mis-use.

Function parameters

Ideally, a function parameter not modified by the function should be declared as const.
This is important in particular for strings (char*) because the actual arguments are often
string literals. It is perfectly legitimate and safe to use a type char* value for a type const
char* variable (in an assignment, as initializer, as function argument, or as return value).
It is equally safe to use a type char** value for a type const char*const* variable, but
not for a type const char*x variable since that might cause modification of a quantity
supposed to be constant.

Getting all const qualifiers right can get quite involved but can almost always be done.
There are only a couple notable exceptions: the X11 headers are full of declarations that
ought to use const but do not; at one time, 1ibfreetype also did not fully specify const,
but this has not been checked recently.

What must be avoided with const

The GCC compiler warnings “assignment discards qualifiers. . .” and analogous warnings
for “initialization”, “passing arg”, or “return” must be strenuously avoided in our own code.
The only exception is when they are caused by X11 declarations or other third party code.

9

What should be avoided with const

A type cast, e.g., from const char* to char* does not solve any problems; depending on
warning options, it may only hide them. Therefore such casts should be avoided whenever
possible and otherwise must be carefully analyzed to make sure that they cannot cause the
modification of quantities supposed to be constant.

33

9 Continuous integration

The TEX Live sources are subjected to continuous integration testing on Travis-CI
(https://travis-ci.org/TeX-Live/texlive-source) via a git-svn mirror of the sources
that is pushed to Github (https://github.com/TeX-Live/texlive-source). The git-svn
mirror is updated (currently) at 30 minute intervals, and only the last commit pushed is
tested on Travis-CI.

9.1 Transfer from Subversion to Github

The git-svn program (https://git-scm.com/docs/git-svn) is used to check out the sub-
tree Build/source of the canonical Subversion repository. The author index file used is
not maintained in either Git or Subversion but can be provided on request.

The initial checkout was done by invoking

git svn --authors-file usermap clone \
svn://user@tug.org/texlive/trunk/Build/source

where the usermap file maps Subversion user names to name and emails of the authors.
Anonymous checkout is also possible:

git svn --authors-file usermap clone \
svn://tug.org/texlive/trunk/Build/source

In the following, we will use admin to refer to a user who has read/write access to
the TEX Live subversion repository, and is also an administrator of the ‘TeX-Live’ team
at Github. The above initial checkout has been carried out by admin on the server
texlive.info.

On Github, a new git repository named texlive-source was created by admin within
the TeX-Live “organization” (https://github.com/TeX-Live). The remote was added
to the checkout with git remote add origin git@github.com:TeX-Live/texlive-
source.git.

To automate the update on Github, a new ssh key was generated and added to the
texlive-source repository on Github as deployment key. Thus, pushes using this key can
only go to the texlive-source repository and not anywhere else.

The usage of git-svn requires a strict discipline to keep a linear history in the master
branch. Since we are aiming at a pure mirror facility on Github, we have decided to further
restrict the master branch of the texlive-source repository on Github to changes by
admin.

This setup allows other developers to branch off master and push their branches to the
Github repository, but all updates need to come from the local master (not the one on
Github) to Subversion, back to master on texlive.info, and from there to Github.

9.2 Automatic update of the Git mirror

admin has installed a cron job on texlive.info running every 30 minute which essentially
runs git svn rebase and git push in the master branch of the checkout. The first com-
mand fetches the changes from the Subversion repository and updates the master branch
with them, and the second pushes changes (if any) to Github.

https://travis-ci.org/TeX-Live/texlive-source
https://github.com/TeX-Live/texlive-source
https://git-scm.com/docs/git-svn
https://github.com/TeX-Live

Chapter 9: Continuous integration 34

9.3 CI testing on Travis-CI

The source tree of TEX Live contains a top-level file .travis.yml which controls the
automatic testing on Travis-CI. admin has registered with Travis-CI and allowed access to
the Github’s TeX-Live organization’s texlive-source repository. The default settings are
to build the last commit of each push. No further action is necessary on Travis-CI.

If changes have been pushed via the cron job above, Travis-CI will automatically checkout
the last pushed commit and try building it.

9.4 Releases on Github

Given a git checkout of texlive-source

git pull

git tag build-svnNNNN

git push —--tags
and the result will appear at https://github.com/TeX-Live/texlive-source/releases
Releases can also be made manually from that web page (see t1-update-bindir for hints).

https://github.com/TeX-Live/texlive-source/releases

35

Appendix A install-tl

A.1 install-t]l NAME

install-tl - TeX Live cross-platform installer

A.2 install-t] SYNOPSIS

install-tl [option]...
install-tl-windows.bat [option]...

A.3 install-tl DESCRIPTION

This installer creates a runnable TeX Live installation from various media, including over
the network, from local hard disk, a DVD, etc. The installer works on all platforms sup-
ported by TeX Live. For information on initially downloading TeX Live, see https://tug.
org/texlive/acquire.html.

The basic idea of TeX Live installation is for you to choose one of the top-level schemes,
each of which is defined as a different set of collections and packages, where a collection is
a set of packages, and a package is what contains actual files. Each package is in exactly
one collection, while schemes can contain any combination of packages and collections.

Within the installer, you can choose a scheme, and further customize the set of collections
to install, but not the set of the packages. To work at the package level, use t1lmgr (reference
just below) after the initial installation is complete.

The default is scheme-full, which installs everything, and this is highly recommended.

A.4 REFERENCES

Post-installation configuration, package updates, and more, are handled through tlmgr(1),
the TeX Live Manager (https://tug.org/texlive/tlmgr.html).

The most up-to-date version of this installer documentation is on the Internet at
https://tug.org/texlive/doc/install-tl.html.

For step-by-step instructions, see https://tug.org/texlive/quickinstall.html.

For the full documentation of TeX Live, see https://tug.org/texlive/doc.

A.5 install-t] EXAMPLES

With no options, install-tl drops you into an interactive menu where essentially all
default settings can be changed. With options, you can initialize the settings in various
ways, or perform the installation without interaction. Some examples:

install-tl --paper=letter
Initialize paper size setting. The only values allowed are letter and (the
default) a4.

install-tl --scheme scheme
Initialize the installation scheme; the default is full. For a list of schemes, see
the interactive S menu.

https://tug.org/texlive/acquire.html
https://tug.org/texlive/acquire.html
https://tug.org/texlive/tlmgr.html
https://tug.org/texlive/doc/install-tl.html
https://tug.org/texlive/quickinstall.html
https://tug.org/texlive/doc

Appendix A: install-tl 36

install-tl —-no-interaction
Perform the installation immediately after parsing options, without entering
the interactive menu.

install-tl --profile tezlive.profile
Install, without interaction, according to the given TL profile file; see Sec-
tion A.7 [PROFILES], page 41, below. To initialize from the profile and then
enter the interactive menu, add --init-from-profile.

Full documentation follows.

A.6 install-t]l OPTIONS

As usual, all options can be specified in any order, and with either a leading - or —-. An
argument value can be separated from its option by either a space or =.

The options relating to customization of the installation can also be selected in the
interactive installation menus (GUI or text).

-gui [[=]module]
-no-gui
If no module is given, starts the Tcl/Tk (see below) GUI installer.

If module is given loads the given installer module. Currently the following
modules are supported:

text

The text mode user interface (default on Unix systems, including
Macs). Same as the -no-gui option.

tcl (or "perltk" or "wizard" or "expert" or nothing)
The Tcl/Tk user interface (default on Windows). It starts with a
small number of configuration options, roughly equivalent to what
the former wizard option offers, but a button Advanced takes you
to a screen with roughly the same options as the former perltk
interface.

The default GUI requires Tcl/Tk. This was standard on Macs, but has been re-
moved in the latest macOS releases. It’s often already installed on GNU /Linux,
or can be easily installed through a distro package manager. For Windows, TeX
Live provides a Tcl/Tk runtime.

-lang llcode
By default, the Tcl GUI uses the language detection built into Tecl/Tk. If that
fails you can select a different language by giving this option with a language
code (based on ISO 639-1). Currently supported (but not necessarily com-
pletely translated) are: English (en, default), Czech (cs), German (de), French
(fr), Italian (it), Japanese (ja), Dutch (nl), Polish (pl), Brazilian Portuguese
(pt-BR), Russian (ru), Slovak (sk), Slovenian (sl), Serbian (sr), Ukrainian (uk),
Vietnamese (vi), simplified Chinese (zh-CN), and traditional Chinese (zh-TW).

-repository url| path
Specify the package repository to be used as the source of the installation. In
short, this can be a directory name or a url using http(s), ftp, or scp. The doc-

Appendix A: install-tl 37

umentation for tlmgr has the details (https://tug.org/texlive/doc/tlmgr.
htm1#0PTIONS).

For installation, the default is to pick a mirror automatically, using https://
mirror.ctan.org/systems/texlive/tlnet; the chosen mirror is then used for
the entire download. You can use the special argument ctan as an abbreviation
for this. (See https://ctan.org for more about CTAN and its mirrors.)

After installation is complete, you can use that installation as the repository for
another installation. If you chose to install less than the full scheme containing
all packages, the list of available schemes will be adjusted accordingly.

-select-repository

-all-options

This option allows you to choose a particular mirror from the current list of
active CTAN mirrors. This option is supported in the text and gui installer
modes, and will also offer to install from local media if available, or from a repos-
itory specified on the command line. It’s useful when the (default) automatic
redirection does not choose a good host for you.

Normally options not relevant to the current platform are not shown (e.g., when
running on Unix, Windows-specific options are omitted). Giving this command
line option allows configuring such "foreign" settings.

-custom-bin path

If you have built your own set of TeX Live binaries (e.g., because precompiled
binaries were not provided by TL for your platform), this option allows you to
specify the path to a directory where the binaries for the current system are
present. The installation will continue as usual, but at the end all files from
path are copied over to bin/custom/ under your installation directory and this
bin/custom/ directory is what will be added to the path for the post-install
actions. To install multiple custom binary sets, manually rename custom before
doing each.

For more information on custom binaries, see https://tug.org/texlive/
custom-bin.html. For general information on building TeX Live, see https://
tug.org/texlive/build.html.

-debug-fakenet

Pretend we're doing a network install. This is for the sole purpose of testing
the code to handle broken downloads, via moving package files aside in a tlnet
mirror hierarchy.

-debug-setup-vars

Print final values of directory variables; for more debugging information on how
they were set, also specify -v.

-debug-translation

In the former Perl/Tk GUI modes, this option reported any missing, or more
likely untranslated, messages to standard error. Not yet implemented for the
Tcl interface. Helpful for translators to see what remains to be done.

https://tug.org/texlive/doc/tlmgr.html#OPTIONS
https://tug.org/texlive/doc/tlmgr.html#OPTIONS
https://mirror.ctan.org/systems/texlive/tlnet
https://mirror.ctan.org/systems/texlive/tlnet
https://ctan.org
https://tug.org/texlive/custom-bin.html
https://tug.org/texlive/custom-bin.html
https://tug.org/texlive/build.html
https://tug.org/texlive/build.html

Appendix A: install-tl 38

-force-platform platform
Instead of auto-detecting the current platform, use platform. Binaries for this
platform must be present in bin/platform/ and they must be runnable, or
installation will fail. ~force-arch is a synonym.

-help, —help, -?
Display this help and exit. (This help is also on the web at https://tug.
org/texlive/doc/install-tl.html). Sometimes the perldoc and/or PAGER
programs on the system have problems, possibly resulting in control charac-
ters being literally output. This can’t always be detected, but you can set the
NOPERLDOC environment variable and perldoc will not be used.

-in-place
This is a quick-and-dirty installation option in case you already have an rsync
or svn checkout of TeX Live. It will use the checkout as-is and will just do the
necessary post-install. Be warned that the file t1pkg/texlive.tlpdb may be
rewritten, that removal has to be done manually, and that the only realistic

way to maintain this installation is to redo it from time to time. This option is
not available via the installer interfaces. USE AT YOUR OWN RISK.

-init-from-profile profile_file
Similar to -profile (see Section A.7 [PROFILES], page 41, below), but only ini-
tializes the installation configuration from profile_file and then starts a normal
interactive session. Environment variables are not ignored.

-logfile file

Write both all messages (informational, debugging, warnings) to file, in addition
to standard output or standard error.

If this option is not given, the installer will create a log file in the root of the
writable installation tree, for example, /usr/local/texlive/YYYY/install-
tl.log for the YYYY release.

-no-cls

For the text mode installer only: do not clear the screen when entering a new
menu. For debugging.

-no-continue
Quit early on installation failure of a non-core package.

By default, a few core packages are installed first; then, a failed installation of
any other (non-core) package is noted, but does not stop the installation. Any
such failed packages are retried, once.

If the retry also fails, by default the installer proceeds to completion anyway,
with the idea that it was a transient network problem and reinstallation will
succeed later. If this option is specified, and the retry fails, the installer aborts.

-no-doc-install

-no-src-install
Do not install the documentation resp. source package files, both for the im-
mediate installation and for future updates. After installation, inclusion of the
doc/src files can be re-enabled via tlmgr:

https://tug.org/texlive/doc/install-tl.html
https://tug.org/texlive/doc/install-tl.html

Appendix A: install-tl 39

tlmgr option docfiles 1
tlmgr option srcfiles 1

If you later find that you want the doc/src files for a package that has been
installed without them, you can get them like this (using the fontspec package
as the example):

tlmgr install --reinstall --with-doc --with-src fontspec

The source files mentioned here are those relating to TeX packages, such as
.dtx files. The sources that are compiled to make the binaries are available
separately: see https://tug.org/texlive/svn/.

-no-installation
Do not perform any installation. This is for debugging the initialization and
setup routines without touching the disk.

-no-interaction
Do not enter the interactive menu; immediately perform the installation after
initialization and option parsing. Also omit the check for a previous installation
and asking about importing previous settings.

-no-persistent-downloads

-persistent-downloads
For network installs, activating this option makes the installer try to set up a
persistent connection using the LWP Perl module. This opens only one connec-
tion between your computer and the server per session and reuses it, instead of
initiating a new download for each package, which typically yields a significant
speed-up.
This option is turned on by default, and the installation program will fall back
to using wget if this is not possible. To disable usage of LWP and persistent
connections, use -no-persistent-downloads.

-no-verify-downloads
By default, if a GnuPG gpg binary is found in PATH, downloads are ver-
ified against a cryptographic signature. This option disables such verifica-
tion. The full description is in the Crytographic Verification section of the
tlmgr documentation, e.g., https://tug.org/texlive/doc/tlmgr.html#
CRYPTOGRAPHIC-VERIFICATION

-non-admin
For Windows only: configure for the current user, not for all users.

-paper a4|letter
Set the default paper size for all TeX Live programs, as specified. The default is
a4. The paper size can be set after installation with the t1mgr paper command.

-portable
Install for portable use, e.g., on a USB stick. See the instopt_portable de-
scription below for details.

-print-platform
Print the TeX Live identifier for the detected platform (hardware/operating
system) combination to standard output, and exit. -print-arch is a synonym.

https://tug.org/texlive/svn/
https://tug.org/texlive/doc/tlmgr.html#CRYPTOGRAPHIC-VERIFICATION
https://tug.org/texlive/doc/tlmgr.html#CRYPTOGRAPHIC-VERIFICATION

Appendix A: install-tl 40

-profile profile_file
Load profile_file and do the installation with no user interaction, that is, a
batch (unattended) install. Environment variables are ignored. See Section A.7
[PROFILES], page 41, below.

-q
Omit normal informational messages.

-scheme scheme
Schemes are the highest level of package grouping in TeX Live; the default is
to use the full scheme, which includes everything. This option overrides that
default. The scheme argument value may optionally have a prefix scheme-.
The list of supported scheme names depends on what your package repository
provides; see the interactive menu list.

-texdir dir
Specify the system installation directory; the default is /usr/local/texlive/YYYY}]
for release YYYY. Specifying this option also causes the TEXMFLOCAL,
TEXMFSYSCONFIG, and TEXMFSYSVAR directories to be set as subdirectories of
dir, so they don’t have to be set individually.

There is a brief summary of these directories trees at Section A.9 [DIRECTORY
TREES], page 44, below; for details on the trees set up by default, and their
intended usage, see the main TeX Live documentation at https://tug.org/
texlive/doc.

-texuserdir dir
Specify the user installation directory; the default is ~/.texliveYYYY (ex-
cept on Macs, where there is no leading dot). Specifying this also causes the
TEXMFHOME, TEXMFCONFIG, and TEXMFVAR directories to be set as subdirectories
of dir.

-texmflocal dir
Specify the TEXMFLOCAL directory; the default is /usr/local/texlive/texmf-
local, that is, one level up from the main installation. This is so locally-
installed packages can be easily used across releases, which is usually desirable.
Specifying the -texdir option changes this, putting TEXMFLOCAL under the
main tree. The —texmflocal option can be used to specify an explicit directory.

Anything installed here must follow the TeX directory structure (TDS), e.g.,
TEXMFHOME/tex/latex/mypkg/mypkg.sty. TDS reference: https://tug.org/
tds.

-texmfhome dir
Specify the TEXMFHOME directory; the default is ~/texmf, except on Macs, where
it is “/Library/texmf. Analogously to TEXMFLOCAL, the -texuserdir option
changes this default.

Also as with TEXMFLOCAL, anything installed here must follow the TDS.
-texmfsysconfig dir

-texmfsysvar dir
Specify the TEXMFSYSCONFIG and TEXMFSYSVAR system directories.

https://tug.org/texlive/doc
https://tug.org/texlive/doc
https://tug.org/tds
https://tug.org/tds

Appendix A: install-tl 41

-texmfconfig dir

-texmfvar dir
Specify the TEXMFCONFIG and TEXMFVAR user directories. The defaults are
~/.texliveYYYY/texmf-{config,var}, except on Macs, where the leading dot
is omitted (“/texliveYYYY/...).

Include verbose debugging messages; repeat for maximum debugging: -v -v.
(Further repeats are accepted but ignored.)

-version, —version
Output version information and exit. If -v is also given, the versions of the
TeX Live modules used are also reported.

A.7 PROFILES

A profile file normally contains all the values needed to perform an installation. After a
normal installation has finished, a profile for that exact installation is written to the file
tlpkg/texlive.profile. In addition, from the text menu one can select P to save the
current setup as a profile at any time. These are small text files; feel free to peruse and edit
them according to your needs.

Such a profile file can be given as the argument to -profile, for example to redo the
exact same installation on a different system. Alternatively, you can use a custom profile,
most easily created by starting from a generated one and changing values. An empty profile
file will cause the installer to use the defaults.

As mentioned above, the installer only supports selection by scheme and collections, not
individual packages, so packages cannot be specified in profile files either. Use tlmgr to
work at the package level.

Within a profile file, each line consists of
variable [value]

except for comment lines starting with #. The possible variable names are listed below.
Values, when present, are either 0 or 1 for booleans, or strings (which must be specified
without any quote characters). Leading whitespace is ignored.

If the variable selected_scheme is defined and no collection variables at all are defined,
then the collections required by the specified scheme (which might change over time) are
installed, without explicitly listing them. This eases maintenance of profile files. If any
collections are specified in a profile, though, then the scheme is ignored and all desired
collections must be given explicitly.

For example, a line
selected_scheme scheme-small

along with definitions for the installation directories (given below under "path options")
suffices to install the "small" scheme with all default options. The schemes are described
in the S menu in the text installer, or equivalent.

In addition to selected_scheme, here are the other variable names supported in a profile:

collection options (prefix collection-)

Appendix A: install-tl 42

Collections are specified with a variable name with the prefix collection- followed by
a collection name; there is no value. For instance, collection-basic. The collections are
described in the C menu.

Schemes and collections (and packages) are ultimately defined by the files in the
tlpkg/tlpsrc/ source directory.

path options

It is best to define all of these, even though they may not be used in a given installation,
so as to avoid unintentionally getting a default value that could cause problems later.

TEXDIR
TEXMFLOCAL
TEXMFSYSCONFIG
TEXMFSYSVAR
TEXMFCONFIG
TEXMFVAR
TEXMFHOME

installer options (prefix instopt_)

instopt_adjustpath (default 0 on Unix, 1 on Windows)
Adjust PATH environment variable.

instopt_adjustrepo (default 1)
Set remote repository to a multiplexed CTAN mirror after installation; see
-repository above.

instopt_letter (default 0)
Set letter size paper as the default, instead of a4.

instopt_portable (default 0)
Install for portable use, e.g., on a USB stick, without touching the host system.
Specifically, this forces the user directories TEXMFHOME, TEXMFCONFIG, TEXMFVAR
to be identical to the system directories TEXMFLOCAL, TEXMFSYSCONFIG,
TEXMFSYSVAR, respectively (regardless of other options and environment
variable.)

In addition, on Windows, it disables the desktop integration, path adjustment,
and file associations actions usually performed.

instopt_writel8_restricted (default 1)
Enable \write18 for a restricted set of programs.

tlpdb options (prefix tlpdbopt_)

The definitive list is given in tlpkg/TeXLive/TLConfig.pm, in the hash
%TeXLive: :TLConfig: : TLPDBOptions, together with explanations. All items given there
except for tlpdbopt_location can be specified. Here is the current list:

tlpdbopt_autobackup
tlpdbopt_backupdir
tlpdbopt_create_formats
tlpdbopt_desktop_integration
tlpdbopt_file_assocs

Appendix A: install-tl 43

tlpdbopt_generate_updmap
tlpdbopt_install_docfiles
tlpdbopt_install_srcfiles
tlpdbopt_post_code
tlpdbopt_sys_bin
tlpdbopt_sys_info
tlpdbopt_sys_man
tlpdbopt_w32_multi_user

platform options (prefix binary_)

For each supported platform in TeX Live (directories under bin/), the variable binary_
PLATFORM can be set with value 1. For example:

binary_x86_64-linux 1
If no binary_ settings are made, the default is whatever the current machine is running.

In releases before 2017, many profile variables had different names (not documented
here; see the install-tl source). They are accepted and transformed to the names given
above. When a profile is written, the names above are always used.

For more details on all of the above options, consult the TeX Live installation manual,
linked from https://tug.org/texlive/doc.

A.8 ENVIRONMENT VARIABLES

For ease in scripting and debugging, install-tl looks for the following environment vari-
ables. They are not of interest for normal user installations.

NOPERLDOC
Don’t try to run the —--help message through perldoc.

TEXLIVE_DOWNLOADER

TL_DOWNLOAD_PROGRAM

TL_DOWNLOAD_ARGS
These override the normal choice of a download program; see the tlmgr
documentation, e.g., https://tug.org/texlive/doc/tlmgr .html#
ENVIRONMENT-VARIABLES.

TEXLIVE_INSTALL_ENV_NOCHECK
Omit the check for environment variables containing the string tex. People
developing TeX-related software are likely to have many such variables.

TEXLIVE_INSTALL_NO_CONTEXT_CACHE
Omit creating the ConTeXt cache. This is useful for redistributors.

TEXLIVE_INSTALL_NO_DISKCHECK
If set to 1, omit free disk space check. By default, if a POSIX-compliant df
program (supporting -Pk) is available, the installer checks for available disk
space in the selected installation location, and will abort installation if there is
insufficient disk space, plus a margin of 100MB. An equivalent check is made
on Windows (not involving df).

https://tug.org/texlive/doc
https://tug.org/texlive/doc/tlmgr.html#ENVIRONMENT-VARIABLES
https://tug.org/texlive/doc/tlmgr.html#ENVIRONMENT-VARIABLES

Appendix A: install-tl 44

TEXLIVE_INSTALL_NO_RESUME
Omit check for installing on top of a previous installation and then asking about
importing previous settings.

TEXLIVE_INSTALL_NO_WELCOME
Omit printing the welcome message after successful installation, e.g., when
testing.

TEXLIVE_INSTALL_PAPER
Set the default paper size for all relevant programs; must be either letter or
a4. The default is a4.

TEXLIVE_INSTALL_PREFIX

TEXLIVE_INSTALL_TEXMFCONFIG

TEXLIVE_INSTALL_TEXMFVAR

TEXLIVE_INSTALL_TEXMFHOME

TEXLIVE_INSTALL_TEXMFLOCAL

TEXLIVE_INSTALL_TEXMFSYSCONFIG

TEXLIVE_INSTALL_TEXMFSYSVAR
Specify the respective directories. TEXLIVE_INSTALL_PREFIX defaults to
/usr/local/texlive. All the defaults can be seen by running the installer
interactively and then typing D for the directory menu.

The various command line options for specifying directories override these en-
vironment variables; since specifying both is usually accidental, a warning is
given if the values are different.

A.9 DIRECTORY TREES

There are a plethora of ways to specify the plethora of directory trees used by TeX Live.
By far the simplest, and recommended, approach is not to change anything. The defaults
suffice for the vast majority of installations.

But, for the sake of explanation, here is a table of the trees and the command line options
that change them. The first group of three are system directories, and the second group of
three are user directories; the two groups are quite analogous.

oo et e ettt
| tree | default | group change | single change
e o Fmmm e oo
| TEXMFLOCAL | /usr/local/texlive/texmf-local | --texdir | --texmflocal

| TEXMFSYSVAR | /usr/local/texlive/YYYY/texmf-var | --texdir | —-texmfsysvar

| TEXMFSYSCONFIG | /usr/local/texlive/YYYY/texmf-config | --texdir | —--texmfsysconfig
Fomm e e ettt e e e
| TEXMFHOME | ~/texmf | --texuserdir | --texmfhome

| TEXMFVAR | ~/.texliveYYYY/texmf-var | --texuserdir | --texmfvar

| TEXMFCONFIG | ~/.texliveYYYY/texmf-config | -—texuserdir | --texmfconfig

Fomm e e et e e

In addition, as mentioned in the previous section, each tree has an environment variable
TEXLIVE_INSTALL_tree which overrides the default; command line and profile settings both
override environment variable settings.

Appendix A: install-tl 45

The defaults vary slightly on Macs, as explained above in Section A.6 [OPTIONS],
page 36.

For the user trees, the default value uses ~, and this is left as a literal ~ in texmf.cnf.
That way, each user can have their own TEXMFHOME, etc., as intended. On the other hand,
for the system trees, if ~ is used during the installation, this is assumed to simply be a typing
shorthand, and the expanded home directory is written in texmf .cnf, since it doesn’t make
sense to have user-specific system directories.

For more on the directory trees and their intended usage, see the main TeX Live docu-
mentation at https://tug.org/texlive/doc.

A.10 install-tl BUGS

The install-tl script copies itself into the installed tree. Usually, it can be run from
there, using the installed tree as the source for another installation. Occasionally, however,
there may be incompatibilities in the code of the new install-tl and the infrastructure,
resulting in (probably) inscrutable Perl errors. The way forward is to run install-tl
out of the installer package (install-tl-unx.tar.gz or install-tl.zip) instead of the
installation. Feel free to also report the issue; usually the code can be easily synced up
again.

By the way, do not try to use install-tl to adjust options or installed packages in an
existing installed tree. Use tlmgr instead.

A.11 AUTHORS AND COPYRIGHT

This script and its documentation were written for the TeX Live distribution (https://
tug.org/texlive) and both are licensed under the GNU General Public License Version 2
or later.

$1d: install-t] 69711 2024-02-05 17:23:27Z karl $

https://tug.org/texlive/doc
https://tug.org/texlive
https://tug.org/texlive

46

Appendix B tlmgr

B.1 tlmgr NAME
tlmgr - the native TeX Live Manager

B.2 tlmgr SYNOPSIS

tlmgr [option...] action [option...] [operand...]

B.3 tlmgr DESCRIPTION

tlmgr manages an existing TeX Live installation, both packages and configuration options.
For information on initially downloading and installing TeX Live, see https://tug.org/
texlive/acquire.html.

The most up-to-date version of this documentation (updated nightly from the develop-
ment sources) is available at https://tug.org/texlive/tlmgr.html, along with proce-
dures for updating tlmgr itself and information about test versions.

TeX Live is organized into a few top-level schemes, each of which is specified as a different
set of collections and packages, where a collection is a set of packages, and a package is what
contains actual files. Schemes typically contain a mix of collections and packages, but each
package is included in exactly one collection, no more and no less. A TeX Live installation
can be customized and managed at any level.

See https://tug.org/texlive/doc for all the TeX Live documentation available.

B.4 tlmgr EXAMPLES

After successfully installing TeX Live, here are a few common operations with tlmgr:

tlmgr option repository ctan

tlmgr option repository https://mirror.ctan.org/systems/texlive/tlnet
Tell tlmgr to use a nearby CTAN mirror for future updates; useful if you
installed TeX Live from the DVD image and want to have continuing updates.
The two commands are equivalent; ctan is just an alias for the given url.

Caveat: mirror.ctan.org resolves to many different hosts, and they are not
perfectly synchronized; we recommend updating only daily (at most), and not
more often. You can choose a particular mirror if problems; the list of all CTAN
mirrors with the status of each is at https://ctan.org/mirrors/mirmon.

tlmgr update --list
Report what would be updated without actually updating anything.

tlmgr update --all
Make your local TeX installation correspond to what is in the package repository
(typically useful when updating from CTAN).

tlmgr info what
Display detailed information about a package what, such as the installation
status and description, of searches for what in all packages.

https://tug.org/texlive/acquire.html
https://tug.org/texlive/acquire.html
https://tug.org/texlive/tlmgr.html
https://tug.org/texlive/doc
https://ctan.org/mirrors/mirmon

Appendix B: tlmgr 47

tlmgr bug what
Display available bug-reporting information for what, a package or file name.

For all the capabilities and details of t1lmgr, please read the following voluminous infor-
mation.

B.5 tlmgr OPTIONS

The following options to tlmgr are global options, not specific to any action. All options,
whether global or action-specific, can be given anywhere on the command line, and in any
order. The first non-option argument will be the main action. In all cases, —-option and
-option are equivalent, and an = is optional between an option name and its value.

—repository url| path
Specify the package repository from which packages should be installed
or updated, either a local directory or network location, as below. This
overridesthe default package repository found in the installation’s TeX Live
Package Database (a.k.a. the TLPDB, which is given entirely in the file
tlpkg/texlive.tlpdb).
This --repository option changes the location only for the current run; to
make a permanent change, use option repository (see the Section B.6.16
[option], page 58, action).
As an example, you can choose a particular CTAN mirror with something like
this:

-repository http://ctan.example.org/its/ctan/dir/systems/texlive/tlnet]]

Of course a real hostname and its particular top-level CTAN directory have
to be specified. The list of CTAN mirrors is available at https://ctan.org/
mirrors/mirmon.

Here’s an example of using a local directory:
-repository /local/TL/repository

For backward compatibility and convenience, ——location and --repo are ac-
cepted as aliases for this option.

Locations can be specified as any of the following:

/some/local/dir
file:/some/local/dir
Equivalent ways of specifying a local directory.

ctan

https://mirror.ctan.org/systems/texlive/tlnet
Pick a CTAN mirror automatically, trying for one that is both
nearby and up-to-date. The chosen mirror is used for the entire
download. The bare ctan is merely an alias for the full url. (See
https://ctan.org for more about CTAN and its mirrors.)

http://server/path/to/tlnet
Standard HTTP. If the (default) LWP method is used, persis-
tent connections are supported. TL can also use curl or wget

https://ctan.org/mirrors/mirmon
https://ctan.org/mirrors/mirmon
https://ctan.org

Appendix B: tlmgr 48

to do the downloads, or an arbitrary user-specified program, as de-
scribed in the tlmgr documentation (https://tug.org/texlive/
doc/tlmgr.html#ENVIRDNMENT-VARIABLES)

https://server/path/to/tlnet
Again, if the (default) LWP method is used, this supports persistent
connections. Unfortunately, some versions of wget and curl do not
support https, and even when wget supports https, certificates may
be rejected even when the certificate is fine, due to a lack of local
certificate roots. The simplest workaround for this problem is to
use http or ftp.

ftp://server/path/to/tlnet
If the (default) LWP method is used, persistent connections are
supported.

user@machine:/path/to/tlnet

scp://user@machine/path/to/tlnet

ssh://user@machine/path/to/tlnet
These forms are equivalent; they all use scp to transfer files. Using
ssh-agent is recommended. (Info: https://en.wikipedia.org/
wiki/OpenSSH, https://en.wikipedia.org/wiki/Ssh-agent.)

If the repository is on the network, trailing / characters and/or trailing /t1pkg
and/or /archive components are ignored.

—gui [action]
Two notable GUI front-ends for tlmgr, tlshell and tlcockpit, are started
up as separate programs; see their own documentation.

tlmgr itself has a graphical interface as well as the command line interface. You
can give the option to invoke it, -—gui, together with an action to be brought
directly into the respective screen of the GUI. For example, running

tlmgr --gui update
starts you directly at the update screen. If no action is given, the GUI will be
started at the main screen. See Section B.11 [GUI FOR TLMGR], page 74.

However, the native GUI requires Perl/TK, which is no longer included in TeX
Live’s Perl distribution for Windows. You may find tlshell or tlcockpit
easier to work with.

—gui-lang llcode

By default, the GUI tries to deduce your language from the environment
(on Windows via the registry, on Unix via LC_MESSAGES). If that
fails you can select a different language by giving this option with a
language code (based on ISO 639-1). Currently supported (but not
necessarily completely translated) are: English (en, default), Czech (cs),
German (de), French (fr), Italian (it), Japanese (ja), Dutch (nl), Polish (pl),
Brazilian Portuguese (pt-BR), Russian (ru), Slovak (sk), Slovenian (sl),
Serbian (sr), Ukrainian (uk), Vietnamese (vi), simplified Chinese (zh_CN),
and traditional Chinese (zh-TW).

tlshell shares its message catalog with tlmgr.

https://tug.org/texlive/doc/tlmgr.html#ENVIRONMENT-VARIABLES
https://tug.org/texlive/doc/tlmgr.html#ENVIRONMENT-VARIABLES
https://en.wikipedia.org/wiki/OpenSSH
https://en.wikipedia.org/wiki/OpenSSH
https://en.wikipedia.org/wiki/Ssh-agent

Appendix B: tlmgr 49

—command-logfile file
tlmgr logs the output of all programs invoked (mktexlr, mtxrun, fmtutil,
updmap) to a separate log file, by default TEXMFSYSVAR/web2c/tlmgr-
commands.log. This option allows you to specify a different file for the
log.

—debug-translation
In GUI mode, this switch tells tlmgr to report any untranslated (or missing)
messages to standard error. This can help translators to see what remains to
be done.

—machine-readable
Instead of the normal output intended for human consumption, write (to stan-
dard output) a fixed format more suitable for machine parsing. See the Sec-
tion B.12 [MACHINE-READABLE OUTPUT], page 77, section below.

—no-execute-actions
Suppress the execution of the execute actions as defined in the tlpsrc files.
Documented only for completeness, as this is only useful in debugging.

—package-logfile file
tlmgr logs all package actions (install, remove, update, failed updates, failed
restores) to a separate log file, by default TEXMFSYSVAR/web2c/t1lmgr.log. This
option allows you to specify a different file for the log.

—pause

This option makes t1lmgr wait for user input before exiting. Useful on Windows
to avoid disappearing command windows.

—persistent-downloads

—no-persistent-downloads
For network-based installations, this option (on by default) makes tlmgr try
to set up a persistent connection (using the LWP Perl module). The idea is to
open and reuse only one connection per session between your computer and the
server, instead of initiating a new download for each package.

If this is not possible, tlmgr will fall back to using wget. To disable these
persistent connections, use ——no-persistent-downloads.

—pin-file
Change the pinning file location from TEXMFLOCAL/tlpkg/pinning.txt (see
Section B.10.1 [Pinning], page 73, below). Documented only for completeness,
as this is only useful in debugging.

—usermode

Activates user mode for this run of tlmgr; see Section B.9 [USER MODE],
page 71, below.

—usertree dir
Uses dir for the tree in user mode; see Section B.9 [USER MODE], page 71,
below.

Appendix B: tlmgr 50

—verify-repo=[none | main | all|
Defines the level of verification done: If none is specified, no verification what-
soever is done. If main is given and a working GnuPG (gpg) binary is available,
all repositories are checked, but only the main repository is required to be
signed. If all is given, then all repositories need to be signed. See Section B.8
[CRYPTOGRAPHIC VERIFICATION], page 70, below for details.

The standard options for TeX Live programs are also accepted: --help/-h/-7,
--version, -q (no informational messages), -v (debugging messages, can be repeated).
For the details about these, see the TeXLive: : TLUtils documentation.

The --version option shows version information about the TeX Live release and about
the tlmgr script itself. If -v is also given, revision number for the loaded TeX Live Perl
modules are shown, too.

B.6 ACTIONS

B.6.1 help

Display this help information and exit (same as -—help, and on the web at https://tug.
org/texlive/doc/tlmgr.html). Sometimes the perldoc and/or PAGER programs on the
system have problems, resulting in control characters being literally output. This can’t
always be detected, but you can set the NOPERLDOC environment variable and perldoc will
not be used.

B.6.2 version
Gives version information (same as --version).

If -v has been given the revisions of the used modules are reported, too.

B.6.3 backup

backup [option...] —all

backup [option...] pkg...
If the --clean option is not specified, this action makes a backup of the given
packages, or all packages given --all. These backups are saved to the value
of the —--backupdir option, if that is an existing and writable directory. If
--backupdir is not given, the backupdir option setting in the TLPDB is
used, if present. If both are missing, no backups are made. (The installer
sets backupdir to .../tlpkg/backups, under the TL root installation direc-
tory, so it is usually defined; see the Section B.6.16 [option], page 58, description
for more information.)

If the --clean option is specified, backups are pruned (removed) instead of
saved. The optional integer value N may be specified to set the number of
backups that will be retained when cleaning. If N is not given, the value of the
autobackup option is used. If both are missing, an error is issued. For more
details of backup pruning, see the option action.

Options:

https://tug.org/texlive/doc/tlmgr.html
https://tug.org/texlive/doc/tlmgr.html

Appendix B: tlmgr 51

—backupdir directory
Overrides the backupdir option setting in the TLPDB. The direc-
tory argument is required and must specify an existing, writable
directory where backups are to be placed.

—all

If -—clean is not specified, make a backup of all packages in the
TeX Live installation; this will take quite a lot of space and time.
If —-clean is specified, all packages are pruned.

—clean[=N]
Instead of making backups, prune the backup directory of old back-
ups, as explained above. The optional integer argument N overrides
the autobackup option set in the TLPDB. You must use --all or
a list of packages together with this option, as desired.

—dry-run

Nothing is actually backed up or removed; instead, the actions to
be performed are written to the terminal.

B.6.4 bug [search-string]

Searches for search-string (prompted for, if not given) as a package name and in package de-
scriptions, as complete words, and in filenames, as any substring, and outputs bug-reporting
and other information for the package selected from the results.

The search is equivalent to tlmgr search --word --file search-string. Thus,
search-string is interpreted as a (Perl) regular expression.

B.6.5 candidates pkg
Shows the available candidate repositories for package pkg. See Section B.10 [MULTIPLE
REPOSITORIES], page 72, below.

B.6.6 check [option...]
[depends | executes|files | runfiles | texmfdbs| all]

Execute one (or all) check(s) of the consistency of the installation. If no problems are found,
there will be no output. (To get a view of what is being done, run tlmgr -v check.)

depends
Lists those packages which occur as dependencies in an installed collection, but
are themselves not installed, and those packages which are not contained in any
collection.
If you call t1lmgr check collections this test will be carried out instead since
former versions for tlmgr called it that way.

executes

Check that the files referred to by execute directives in the TeX Live Database
are present.

files

Appendix B: tlmgr 52

Checks that all files listed in the local TLPDB (texlive.tlpdb) are actually
present, and lists those missing.

runfiles
List those filenames that are occurring more than one time in the runfiles sec-
tions, except for known duplicates.

texmfdbs
Checks related to the 1s-R files. If you have defined new trees, or changed the
TEXMF or TEXMFDBS variables, it can’t hurt to run this. It checks that:
- all items in TEXMFDBS have the !! prefix.
- all items in TEXMFBDS have an 1s-R file (if they exist at all).
- all items in TEXMF with !! are listed in TEXMFDBS.
- all items in TEXMF with an 1s-R file are listed in TEXMFDBS.

Options:

—use-svn
Use the output of svn status instead of listing the files; for checking the TL
development repository. (This is run nightly.)

B.6.7 conf

conf [texmf|tlmgr |updmap [—conffile file] [-delete] [key [value]]]
conf auxtrees [—conffile file] [show | add |remove] [value]

With only conf, show general configuration information for TeX Live, includ-
ing active configuration files, path settings, and more. This is like running
texconfig conf, but works on all supported platforms.

With one of conf texmf, conf tlmgr, or conf updmap, shows all key/value
pairs (i.e., all settings) as saved in ROOT/texmf.cnf, the user-specific tlmgr
configuration file (see below), or the first found (via kpsewhich) updmap.cfg
file, respectively.

If key is given in addition, shows the value of only that key in the respective
file. If option —delete is also given, the value in the given configuration file is
entirely removed (not just commented out).

If value is given in addition, key is set to value in the respective file. No error
checking is done!

The PATH value shown by conf is as used by tlmgr. The directory in which
the tlmgr executable is found is automatically prepended to the PATH value
inherited from the environment.

Here is a practical example of changing configuration values. If the execution
of (some or all) system commands via \write18 was left enabled during instal-
lation, you can disable it afterwards:

tlmgr conf texmf shell_escape O

The subcommand auxtrees allows adding and removing arbitrary additional
texmf trees, completely under user control. auxtrees show shows the list of
additional trees, auxtrees add tree adds a tree to the list, and auxtrees

Appendix B: tlmgr 53

remove tree removes a tree from the list (if present). The trees should not
contain an 1s-R file (or files will not be found if the 1s-R becomes stale). This
works by manipulating the Kpathsea variable TEXMFAUXTREES, in (by default)
ROOT/texmf .cnf. Example:

tlmgr conf auxtrees add /quick/test/tree
tlmgr conf auxtrees remove /quick/test/tree

In all cases the configuration file can be explicitly specified via the option
--conffile file, e.g., if you don’t want to change the system-wide configu-
ration.

Warning: The general facility for changing configuration values is here, but
tinkering with settings in this way is strongly discouraged. Again, no error
checking on either keys or values is done, so any sort of breakage is possible.

B.6.8 dump-tlpdb [option...] [—json]

Dump complete local or remote TLPDB to standard output, as-is. The output is analogous
to the --machine-readable output; see Section B.12 [MACHINE-READABLE OUTPUT],
page 77, section.

Options:

—local
Dump the local TLPDB.

-remote
Dump the remote TLPDB.
—json
Instead of dumping the actual content, the database is dumped as JSON. For
the format of JSON output see tlpkg/doc/JSON-formats.txt, format defini-
tion TLPDB.
Exactly one of -=—local and --remote must be given.
In either case, the first line of the output specifies the repository location, in this format:
"location-url" "\t" location

where location-url is the literal field name, followed by a tab, and location is the file
or url to the repository.

Line endings may be either LF or CRLF depending on the current platform.

B.6.9 generate

generate [option...] language
generate [option...| language.dat
generate [option...| language.def
generate [option...| language.dat.lua

The generate action overwrites any manual changes made in the respective files: it
recreates them from scratch based on the information of the installed packages, plus local
adaptions. The TeX Live installer and tlmgr routinely call generate for all of these files.

Appendix B: tlmgr 54

For managing your own fonts, please read the updmap --help information and/or
https://tug.org/fonts/fontinstall.html.

For managing your own formats, please read the fmtutil --help information.

In more detail: generate remakes any of the configuration files language.dat,
language.def, and language.dat.lua from the information present in the local TLPDB,
plus locally-maintained files.

The locally-maintained files are language-local.dat, language-local.def, or
language-local.dat.lua, searched for in TEXMFLOCAL in the respective directories. If
local additions are present, the final file is made by starting with the main file, omitting
any entries that the local file specifies to be disabled, and finally appending the local file.

(Historical note: The formerly supported updmap-local.cfg and fmtutil-local.cnf
are no longer read, since updmap and fmtutil now reads and supports multiple configuration
files. Thus, local additions can and should be put into an updmap.cfg of fmtutil.cnf file
in TEXMFLOCAL. The generate updmap and generate fmtutil actions no longer exist.)

Local files specify entries to be disabled with a comment line, namely one of these:

%! NAME
--INAME

where language.dat and language.def use %, and language.dat.lua use --. In all
cases, the name is the respective format name or hyphenation pattern identifier. Examples:

%!german

-—!usenglishmax

(Of course, you're not likely to actually want to disable those particular items. They’re
just examples.)

After such a disabling line, the local file can include another entry for the same item, if
a different definition is desired. In general, except for the special disabling lines, the local
files follow the same syntax as the master files.

The form generate language recreates all three files language .dat, language .def, and
language.dat.lua, while the forms with an extension recreates only that given language
file.

Options:

—dest output_file

specifies the output file (defaults to the respective location in TEXMFSYSVAR).
If --dest is given to generate language, it serves as a basename onto which
.dat will be appended for the name of the language.dat output file, .def will
be appended to the value for the name of the language.def output file, and
.dat.lua to the name of the language.dat.lua file. (This is just to avoid
overwriting; if you want a specific name for each output file, we recommend
invoking tlmgr twice.)

—localcfg local_conf-file
specifies the (optional) local additions (defaults to the respective location in
TEXMFLOCAL).

—rebuild-sys
tells tlmgr to run necessary programs after config files have been regener-
ated. These are: fmtutil-sys --all after generate fmtutil, fmtutil-sys

https://tug.org/fonts/fontinstall.html

Appendix B: tlmgr 55

—--byhyphen .../language.dat after generate language.dat, and fmtutil-
sys —-byhyphen . ../language.def after generate language.def.

These subsequent calls cause the newly-generated files to actually take effect.
This is not done by default since those calls are lengthy processes and one
might want to made several related changes in succession before invoking these
programs.

The respective locations are as follows:

tex/generic/config/language.dat (and language-local.dat)
tex/generic/config/language.def (and language-local.def)
tex/generic/config/language.dat.lua (and language-local.dat.lua)

B.6.10 gui
Start the graphical user interface. See GUI below.

B.6.11 info

info [option...] pkg...

info [option...] collections

info [option...] schemes
With no argument, lists all packages available at the package repository, pre-
fixing those already installed with i.

With the single word collections or schemes as the argument, lists the request
type instead of all packages.

With any other arguments, display information about pkg: the name, category,
short and long description, sizes, installation status, and TeX Live revision
number. If pkg is not locally installed, searches in the remote installation source.

For normal packages (not collections or schemes), the sizes of the four groups
of files (run/src/doc/bin files) are shown separately. For collections, the cumu-
lative size is shown, including all directly-dependent packages (but not depen-
dent collections). For schemes, the cumulative size is also shown, including all
directly-dependent collections and packages.

If pkg is not found locally or remotely, the search action is used and lists match-
ing packages and files.

It also displays information taken from the TeX Catalogue, namely the package
version, date, and license. Consider these, especially the package version, as
approximations only, due to timing skew of the updates of the different pieces.
By contrast, the revision value comes directly from TL and is reliable.

The former actions show and list are merged into this action, but are still
supported for backward compatibility.
Options:
—list
If the option --1ist is given with a package, the list of contained
files is also shown, including those for platform-specific dependen-

cies. When given with schemes and collections, --1ist outputs
their dependencies in a similar way.

Appendix B: tlmgr 56

—only-installed
If this option is given, the installation source will not be used; only
locally installed packages, collections, or schemes are listed.

—only-remote
Only list packages from the remote repository. Useful when check-
ing what is available in a remote repository using tlmgr —--repo ...
--only-remote info. Note that -—only-installed and --only-
remote cannot both be specified.

—data iteml,item2,...
If the option --data is given, its argument must be a comma
or colon separated list of field names from: name, category,
localrev, remoterev, shortdesc, longdesc, installed, size,
relocatable, depends, cat-version, cat-date, cat-license,
plus various cat-contact-* fields (see below).
The cat-* fields all come from the TeX Catalogue (https://ctan.
org/pkg/catalogue). For each, there are two more variants with
prefix 1 and r, e.g., lcat-version and rcat-version, which indi-
cate the local and remote information, respectively. The variants
without 1 and r show the most current one, which is normally the
remote value.
The requested packages’ information is listed in CSV format, one
package per line, and the column information is given by the itemN.
The depends column contains the names of all the dependencies
separated by : characters.
At this writing, the cat-contact-* fields include: home,
repository, support, bugs, announce, development. Kach may
be empty or a url value. A brief description is on the CTAN
upload page for new packages: https://ctan.org/upload.

—json
In case --json is specified, the output is a JSON encoded ar-
ray where each array element is the JSON representation of a
single TLPOBJ but with additional information. For details see
tlpkg/doc/JSON-formats.txt, format definition: TLPOBJINFO. If
both --json and --data are given, --json takes precedence.

B.6.12 init-usertree

Sets up a texmf tree for so-called user mode management, either the default user tree
(TEXMFHOME), or one specified on the command line with --usertree. See Section B.9
[USER MODE], page 71, below.

B.6.13 install [option...] pkg...

Install each pkg given on the command line, if it is not already installed. It does not touch
existing packages; see the update action for how to get the latest version of a package.

By default this also installs all packages on which the given pkgs are dependent. Options:

—dry-run

https://ctan.org/pkg/catalogue
https://ctan.org/pkg/catalogue
https://ctan.org/upload

Appendix B: tlmgr 57

—file

—force

Nothing is actually installed; instead, the actions to be performed are written
to the terminal.

Instead of fetching a package from the installation repository, use the package
files given on the command line. These files must be standard TeX Live package
files (with contained tlpobj file).

If updates to t1mgr itself (or other parts of the basic infrastructure) are present,
tlmgr will bail out and not perform the installation unless this option is given.
Not recommended.

—no-depends

Do not install dependencies. (By default, installing a package ensures that all
dependencies of this package are fulfilled.)

—no-depends-at-all

—reinstall

—with-doc

—with-src

Normally, when you install a package which ships binary files the respective
binary package will also be installed. That is, for a package foo, the package
f00.1i386-1inux will also be installed on an 1386-1inux system. This option
suppresses this behavior, and also implies ——no-depends. Don’t use it unless
you are sure of what you are doing.

Reinstall a package (including dependencies for collections) even if it already
seems to be installed (i.e, is present in the TLPDB). This is useful to recover
from accidental removal of files in the hierarchy.

When re-installing, only dependencies on normal packages are followed (i.e.,
not those of category Scheme or Collection).

While not recommended, the install-t1l program provides an option to omit
installation of all documentation and/or source files. (By default, everything
is installed.) After such an installation, you may find that you want the doc-
umentation or source files for a given package after all. You can get them by
using these options in conjunction with --reinstall, as in (using the fontspec
package as the example):

tlmgr install --reinstall --with-doc --with-src fontspec

This action does not automatically add new symlinks in system directories; you need to
run tlmgr path add (Section B.6.18 [path], page 60) yourself if you are using this feature
and want new symlinks added.

B.6.14 key

key list

Appendix B: tlmgr 58

key add file

key remove keyid
The action key allows listing, adding and removing additional GPG keys to the
set of trusted keys, that is, those that are used to verify the TeX Live databases.
With the 1list argument, key lists all keys.
The add argument requires another argument, either a filename or
- for stdin, from which the key is added. The key is added to the
local keyring GNUPGHOME/repository-keys.gpg, which is normally
t1lpkg/gpg/repository-keys.gpg.
The remove argument requires a key id and removes the requested id from the
local keyring.

B.6.15 list
Synonym for Section B.6.11 [info], page 55.

B.6.16 option

option [—json| [show]
option [-json] showall | help
option key [value]
The first form, show, shows the global TeX Live settings currently saved in the TLPDB
with a short description and the key used for changing it in parentheses.

The second form, showall, is similar, but also shows options which can be defined but
are not currently set to any value (help is a synonym).

Both show... forms take an option --json, which dumps the option information in
JSON format. In this case, both forms dump the same data. For the format of the JSON
output see tlpkg/doc/JSON-formats.txt, format definition TLOPTION.

In the third form, with key, if value is not given, the setting for key is displayed. If value
is present, key is set to value.

Possible values for key are (run tlmgr option showall for the definitive list):

repository (default package repository),

formats (generate formats at installation or update time),

postcode (run postinst code blobs)

docfiles (install documentation files),

srcfiles (install source files),

backupdir (default directory for backups),

autobackup (number of backups to keep).

sys_bin (directory to which executables are linked by the path action)
sys_man (directory to which man pages are linked by the path action)
sys_info (directory to which Info files are linked by the path action)
desktop_integration (Windows-only: create Start menu shortcuts)
fileassocs (Windows-only: change file associations)

multiuser (Windows-only: install for all users)

One common use of option is to permanently change the installation to get further
updates from the Internet, after originally installing from DVD. To do this, you can run

tlmgr option repository https://mirror.ctan.org/systems/texlive/tlnet

Appendix B: tlmgr 59

The install-tl documentation has more information about the possible values for
repository. (For backward compatibility, location can be used as a synonym for
repository.)

If formats is set (this is the default), then formats are regenerated when either the
engine or the format files have changed. Disable this only when you know how and want to
regenerate formats yourself whenever needed (which is often, in practice).

The postcode option controls execution of per-package postinstallation action code. It
is set by default, and again disabling is not likely to be of interest except to developers
doing debugging.

The docfiles and srcfiles options control the installation of their respective file
groups (documentation, sources; grouping is approximate) per package. By default both
are enabled (1). Either or both can be disabled (set to 0) if disk space is limited or for
minimal testing installations, etc. When disabled, the respective files are not downloaded
at all.

The options autobackup and backupdir determine the defaults for the actions update,
backup and restore. These three actions need a directory in which to read or write the
backups. If ——backupdir is not specified on the command line, the backupdir option value
is used (if set). The TL installer sets backupdir to .. ./tlpkg/backups, under the TL root
installation directory.

The autobackup option (de)activates automatic generation of backups. Its value is an
integer. If the autobackup value is -1, no backups are removed. If autobackup is 0 or
more, it specifies the number of backups to keep. Thus, backups are disabled if the value
is 0. In the --clean mode of the backup action this option also specifies the number to be
kept. The default value is 1, so that backups are made, but only one backup is kept.

To setup autobackup to -1 on the command line, use:
tlmgr option -- autobackup -1

The -- avoids having the -1 treated as an option. (The -- stops parsing for options at
the point where it appears; this is a general feature across most Unix programs.)

The sys_bin, sys_man, and sys_info options are used on Unix systems to control the
generation of links for executables, Info files and man pages. See the path action for details.

The last three options affect behavior on Windows installations. If desktop_
integration is set, then some packages will install items in a sub-folder of the Start menu
for tlmgr gui, documentation, etc. If fileassocs is set, Windows file associations are
made (see also the postaction action). Finally, if multiuser is set, then adaptions to the
registry and the menus are done for all users on the system instead of only the current
user. All three options are on by default.

B.6.17 paper

paper [a4/|letter]
<[xdvi|pdftex | dvips | dvipdfmx | context | psutils| paper [papersize |-list]>
paper —json

With no arguments (tlmgr paper), shows the default paper size setting for all known
programs.

Appendix B: tlmgr 60

With one argument (e.g., tlmgr paper a4), sets the default for all known programs to
that paper size.

With a program given as the first argument and no paper size specified (e.g., tlmgr
dvips paper), shows the default paper size for that program.

With a program given as the first argument and a paper size as the last argument (e.g.,
tlmgr dvips paper a4), set the default for that program to that paper size.

With a program given as the first argument and --1ist given as the last argument (e.g.,
tlmgr dvips paper --list), shows all valid paper sizes for that program. The first size
shown is the default.

If ——json is specified without other options, the paper setup is dumped in JSON for-
mat. For the format of JSON output see tlpkg/doc/JSON-formats.txt, format definition
TLPAPER.

Incidentally, this syntax of having a specific program name before the paper keyword
is unusual. It is inherited from the longstanding texconfig script, which supports other
configuration settings for some programs, notably dvips. tlmgr does not support those
extra settings.

B.6.18 path

path [-windowsmode=user | admin] add

path [-windowsmode=user | admin] remove
On Unix, adds or removes symlinks for executables, man pages, and info
pages in the system directories specified by the respective options (see the
Section B.6.16 [option], page 58, description above). Does not change any
initialization files, either system or personal. Furthermore, any executables
added or removed by future updates are not taken care of automatically; this
command must be rerun as needed.

On Windows, the registry part where the binary directory is added or removed
is determined in the following way:

If the user has admin rights, and the option --windowsmode is not given, the
setting w32_multi_user determines the location (i.e., if it is on then the system
path, otherwise the user path is changed).

If the user has admin rights, and the option --windowsmode is given, this option
determines the path to be adjusted.

If the user does not have admin rights, and the option --windowsmode is not
given, and the setting w32_multi_user is off, the user path is changed, while if
the setting w32_multi_user is on, a warning is issued that the caller does not
have enough privileges.

If the user does not have admin rights, and the option —-windowsmode is given,
it must be user and the user path will be adjusted. If a user without admin
rights uses the option —-windowsmode admin a warning is issued that the caller
does not have enough privileges.

B.6.19 pinning

The pinning action manages the pinning file, see Section B.10.1 [Pinning], page 73, below.

Appendix B: tlmgr 61

pinning show
Shows the current pinning data.

pinning add repo pkgglob...
Pins the packages matching the pkgglob(s) to the repository repo.

pinning remove repo pkgglob...
Any packages recorded in the pinning file matching the <pkgglob>s for the given
repository repo are removed.

pinning remove repo ——all
Remove all pinning data for repository repo.

B.6.20 platform

platform list |add |remove platform...

platform set platform

platform set auto
platform list lists the TeX Live names of all the platforms (a.k.a. architec-
tures), (i386-1inux, ...) available at the package repository.
platform add platform... adds the executables for each given platform platform
to the installation from the repository.
platform remove platform... removes the executables for each given platform
platform from the installation, but keeps the currently running platform in any
case.
platform set platform switches TeX Live to always use the given platform
instead of auto detection.

platform set auto switches TeX Live to auto detection mode for platform.
Platform detection is needed to select the proper xz and wget binaries that are
shipped with TeX Live.
arch is a synonym for platform.
Options:
—dry-run
Nothing is actually installed; instead, the actions to be performed
are written to the terminal.

B.6.21 postaction

postaction [option...] install [shortcut | fileassoc | script] [pkg...]

postaction [option...| remove [shortcut | fileassoc|script] [pkg...]
Carry out the postaction shortcut, fileassoc, or script given as the second
required argument in install or remove mode (which is the first required argu-
ment), for either the packages given on the command line, or for all if --all is
given.
Options:

—~windowsmode=[user | admin]
If the option --windowsmode is given the value user, all actions
will only be carried out in the user-accessible parts of the

Appendix B: tlmgr 62

registry/filesystem, while the value admin selects the system-wide
parts of the registry for the file associations. If you do not have
enough permissions, using —-windowsmode=admin will not succeed.

—fileassocmode=([112]
--fileassocmode specifies the action for file associations. If it is
set to 1 (the default), only new associations are added; if it is set
to 2, all associations are set to the TeX Live programs. (See also
option fileassocs.)

—all

Carry out the postactions for all packages

B.6.22 print-platform

Print the TeX Live identifier for the detected platform (hardware/operating system) com-
bination to standard output, and exit. ——print-arch is a synonym.

B.6.23 print-platform-info

Print the TeX Live platform identifier, TL platform long name, and original output from
guess.

B.6.24 remove [option...] pkg...

Remove each pkg specified. Removing a collection removes all package dependencies (unless
--no-depends is specified), but not any collection dependencies of that collection. However,
when removing a package, dependencies are never removed. Options:

—all

Uninstalls all of TeX Live, asking for confirmation unless ——force is also spec-
ified.

—backup

—backupdir directory
These options behave just as with the Section B.6.31 [update], page 66, ac-
tion (q.v.), except they apply to making backups of packages before they are
removed. The default is to make such a backup, that is, to save a copy of
packages before removal.

The Section B.6.26 [restore], page 64, action explains how to restore from a
backup.

—no-depends
Do not remove dependent packages.
—no-depends-at-all
See above under Section B.6.13 [install], page 56, (and beware).
—force
By default, removal of a package or collection that is a dependency of another

collection or scheme is not allowed. With this option, the package will be
removed unconditionally. Use with care.

Appendix B: tlmgr 63

A package that has been removed using the --force option because it is still
listed in an installed collection or scheme will not be updated, and will be
mentioned as forcibly removed in the output of tlmgr update --list.

—dry-run
Nothing is actually removed; instead, the actions to be performed are written
to the terminal.

Except with --all, this remove action does not automatically remove symlinks to exe-
cutables from system directories; you need to run tlmgr path remove (Section B.6.18 [path],
page 60) yourself if you remove an individual package with a symlink in a system directory.

B.6.25 repository

repository list

repository list path| urll tag

repository add path [tag]

repository remove path|tag

repository set path[#tag| [path[#tag] ...]

repository status
This action manages the list of repositories. See MULTIPLE_REPOSITORIES below
for detailed explanations.

The first form, repository list, lists all configured repositories and the re-
spective tags if set. If a path, url, or tag is given after the 1ist keyword, it is
interpreted as the source from which to initialize a TL database and lists the
contained packages. This can also be an otherwise-unused repository, either
local or remote. If the option --with-platforms is specified in addition, for
each package the available platforms (if any) are also listed.

The form repository add adds a repository (optionally attaching a tag) to the
list of repositories, while repository remove removes a repository, either by
full path/url, or by tag.

The form repository set sets the list of available repositories to the items
given on the command line, overwriting previous settings.

The form repository status reports the verification status of the loaded
repositories with the format of one repository per line with fields separated
by a single space:
The tag (which can be the same as the url);
= the url;
= iff machine-readable output is specified, the verification code (a
number);

= a textual description of the verification status, as the last field
extending to the end of line.

That is, in normal (not machine-readable) output, the third field (numeric
verification status) is not present.

In all cases, one of the repositories must be tagged as main; otherwise, all
operations will fail!

Appendix B: tlmgr 64

B.6.26 restore

restore [option...] pkg [rev]

restore [option...] —all
Restore a package from a previously-made backup.
If --all is given, try to restore the latest revision of all package backups found
in the backup directory.
Otherwise, if neither pkg nor rev are given, list the available backup revisions
for all packages. With pkg given but no rev, list all available backup revisions
of pkg.
When listing available packages, tlmgr shows the revision, and in parenthesis
the creation time if available (in format yyyy-mm-dd hh:mm).
If (and only if) both pkg and a valid revision number rev are specified, try to
restore the package from the specified backup.

Options:
—all

Try to restore the latest revision of all package backups found in
the backup directory. Additional non-option arguments (like pkg)
are not allowed.

—backupdir directory
Specify the directory where the backups are to be found. If not
given it will be taken from the configuration setting in the TLPDB.

—dry-run
Nothing is actually restored; instead, the actions to be performed
are written to the terminal.

—force
Don’t ask questions.

—json

When listing backups, the option --json turn on JSON output.
The format is an array of JSON objects (name, rev, date). For
details see tlpkg/doc/JSON-formats.txt, format definition:
TLBACKUPS. If both --json and --data are given, ——json takes
precedence.

B.6.27 search

search [option...] what

search [option...| —file what

search [option...] —all what
By default, search the names, short descriptions, and long descriptions of all
locally installed packages for the argument what, interpreted as a (Perl) regular
expression.

Options:
—file

Appendix B: tlmgr 65

List all filenames containing what.

—all
Search everything: package names, descriptions and filenames.
—global
Search the TeX Live Database of the installation medium, instead
of the local installation.
—word

Restrict the search of package names and descriptions (but not
filenames) to match only full words. For example, searching for
table with this option will not output packages containing the
word tables (unless they also contain the word table on its own).

B.6.28 shell

Starts an interactive mode, where tlmgr prompts for commands. This can be used directly,
or for scripting. The first line of output is protocol n, where n is an unsigned number
identifying the protocol version (currently 1).

In general, tlmgr actions that can be given on the command line translate to commands
in this shell mode. For example, you can say update --1list to see what would be updated.
The TLPDB is loaded the first time it is needed (not at the beginning), and used for the
rest of the session.

Besides these actions, a few commands are specific to shell mode:

protocol

Print protocol n, the current protocol version.
help

Print pointers to this documentation.
version

Print tlmgr version information.
quit, end, bye, byebye, EOF
Exit.
restart
Restart tlmgr shell with the original command line; most useful when devel-
oping tlmgr.
load [local | remote]
Explicitly load the local or remote, respectively, TLPDB.
save
Save the local TLPDB, presumably after other operations have changed it.
get [var] =item set [var [val]]
Get the value of var, or set it to val. Possible var names: debug-translation,

machine-readable, no-execute-actions, require-verification, verify-
downloads, repository, and prompt. All except repository and prompt are

Appendix B: tlmgr 66

booleans, taking values 0 and 1, and behave like the corresponding command
line option. The repository variable takes a string, and sets the remote repos-
itory location. The prompt variable takes a string, and sets the current default
prompt.

If var or then wal is not specified, it is prompted for.

B.6.29 show
Synonym for Section B.6.11 [info], page 55.

B.6.30 uninstall
Synonym for Section B.6.24 [remove], page 62.

B.6.31 update [option...| [pkg...]

Updates the packages given as arguments to the latest version available at the installation
source. Either --all or at least one pkg name must be specified. Options:

—all

Update all installed packages except for tlmgr itself. If updates to tlmgr itself
are present, this gives an error, unless also the option ——-force or --self is
given. (See below.)

In addition to updating the installed packages, during the update of a collection
the local installation is (by default) synchronized to the status of the collection
on the server, for both additions and removals.

This means that if a package has been removed on the server (and thus has also
been removed from the respective collection), tlmgr will remove the package in
the local installation. This is called “auto-remove” and is announced as such
when using the option --1ist. This auto-removal can be suppressed using the
option --no-auto-remove (not recommended, see option description).

Analogously, if a package has been added to a collection on the server that is
also installed locally, it will be added to the local installation. This is called
“auto-install” and is announced as such when using the option --1list. This
auto-installation can be suppressed using the option --no-auto-install (also
not recommended).

An exception to the collection dependency checks (including the auto-
installation of packages just mentioned) are those that have been “forcibly
removed” by you, that is, you called tlmgr remove --force on them. (See
the remove action documentation.) To reinstall any such forcibly removed
packages use —-reinstall-forcibly-removed.

To reiterate: automatic removals and additions are entirely determined by com-
parison of collections. Thus, if you manually install an individual package foo
which is later removed from the server, tlmgr will not notice and will not re-
move it locally. (It has to be this way, without major rearchitecture work,
because the tlpdb does not record the repository from which packages come
from.)

If you want to exclude some packages from the current update run (e.g., due to
a slow link), see the ——exclude option below.

Appendix B: tlmgr 67

—self

Update tlmgr itself (that is, the infrastructure packages) if updates to it are
present. On Windows this includes updates to the private Perl interpreter
shipped inside TeX Live.

If this option is given together with either --all or a list of packages, then
tlmgr will be updated first and, if this update succeeds, the new version will
be restarted to complete the rest of the updates.

In short:

tlmgr update --self # update infrastructure only
tlmgr update --self --all # update infrastructure and all packages]]
tlmgr update --force --all # update all packages but *not* infrastructuref]
... this last at your own risk, not recommended![Q

—dry-run

Nothing is actually installed; instead, the actions to be performed are written
to the terminal. This is a more detailed report than --list.
-list [pkg]

Concisely list the packages which would be updated, newly installed, or re-
moved, without actually changing anything. If --all is also given, all available
updates are listed. If ——self is given, but not --all, only updates to the criti-
cal packages (tlmgr, texlive infrastructure, perl on Windows, etc.) are listed. If
neither --all nor --self is given, and in addition no pkg is given, then --all
is assumed (thus, tlmgr update --1list is the same as tlmgr update --list
--all). If neither --all nor --self is given, but specific package names are
given, those packages are checked for updates.

—exclude pkg
Exclude pkg from the update process. If this option is given more than once,
its arguments accumulate.

An argument pkg excludes both the package pkg itself and all its related
platform-specific packages pkg. ARCH. For example,

tlmgr update --all --exclude a2ping
will not update a2ping, a2ping.i386-linux, or any other a2ping. ARCH
package.
If this option specifies a package that would otherwise be a candidate for
auto-installation, auto-removal, or reinstallation of a forcibly removed pack-
age, tlmgr quits with an error message. Excludes are not supported in these
circumstances.

This option can also be set permanently in the tlmgr config file with the key
update-exclude.

—no-auto-remove [pkg...|
By default, t1lmgr tries to remove packages in an existing collection which have
disappeared on the server, as described above under --all. This option pre-
vents such removals, either for all packages (with —-all), or for just the given
pkg names. This can lead to an inconsistent TeX installation, since packages

Appendix B: tlmgr 68

are not infrequently renamed or replaced by their authors. Therefore this is not
recommended.

—no-auto-install [pkg...]

Under normal circumstances tlmgr will install packages which are new on the
server, as described above under --all. This option prevents any such auto-
matic installation, either for all packages (with --all), or the given pkg names.

Furthermore, after the tlmgr run using this has finished, the packages that
would have been auto-installed will be considered as forcibly removed. So, if
foobar is the only new package on the server, then

tlmgr update --all --no-auto-install
is equivalent to

tlmgr update --all
tlmgr remove —--force foobar

Again, since packages are sometimes renamed or replaced, using this option is
not recommended.

—reinstall-forcibly-removed

—backup

—backupdir

Under normal circumstances tlmgr will not install packages that have been
forcibly removed by the user; that is, removed with remove --force, or whose
installation was prohibited by —-no-auto-install during an earlier update.

This option makes tlmgr ignore the forcible removals and re-install all such
packages. This can be used to completely synchronize an installation with the
server’s idea of what is available:

tlmgr update --reinstall-forcibly-removed --all

directory

These two options control the creation of backups of packages before updating;
that is, backing up packages as currently installed. If neither option is given,
no backup will made. If --backupdir is given and specifies a writable directory
then a backup will be made in that location. If only --backup is given, then
a backup will be made to the directory previously set via the Section B.6.16
[option], page 58, action (see below). If both are given then a backup will be
made to the specified directory.

You can also set options via the Section B.6.16 [option], page 58, action to
automatically make backups for all packages, and /or keep only a certain number
of backups.

tlmgr always makes a temporary backup when updating packages, in case of
download or other failure during an update. In contrast, the purpose of this
--backup option is to save a persistent backup in case the actual content of the
update causes problems, e.g., introduces an TeX incompatibility.

The Section B.6.26 [restore], page 64, action explains how to restore from a
backup.

Appendix B: tlmgr 69

—no-depends
If you call for updating a package normally all depending packages will also
be checked for updates and updated if necessary. This switch suppresses this
behavior.

—no-depends-at-all
See above under Section B.6.13 [install], page 56, (and beware).

—force

Force update of normal packages, without updating tlmgr itself (unless the
--self option is also given). Not recommended.

Also, update --1ist is still performed regardless of this option.

If the package on the server is older than the package already installed (e.g., if the
selected mirror is out of date), tlmgr does not downgrade. Also, packages for uninstalled
platforms are not installed.

tlmgr saves one copy of the main texlive.tlpdb file used for an update with a suffix
representing the repository url, as in tlpkg/texlive.tlpdb.main.long-hash-string. Thus,
even when many mirrors are used, only one main tlpdb backup is kept. For non-main
repositories, which do not generally have (m)any mirrors, no pruning of backups is done.

This action does not automatically add or remove new symlinks in system directories;

you need to run tlmgr Section B.6.18 [path], page 60, yourself if you are using this feature
and want new symlinks added.

B.7 CONFIGURATION FILE FOR TLMGR

tlmgr reads two configuration files: one is system-wide, in TEXMFSYSCONFIG/tlmgr/config,
and the other is user-specific, in TEXMFCONFIG/tlmgr/config. The user-specific one is the
default for the conf tlmgr action. (Run kpsewhich -var-value=TEXMFSYSCONFIG or ...
TEXMFCONFIG ... to see the actual directory names.)

A few defaults corresponding to command-line options can be set in these configuration
files. In addition, the system-wide file can contain a directive to restrict the allowed actions.

In these config files, empty lines and lines starting with # are ignored. All other lines
must look like:

key = value
where the spaces are optional but the = is required.

The allowed keys are:

Appendix B: tlmgr 70

auto-remove = 0 or 1 (default 1), same as command-line option.

gui-expertmode = 0 or 1 (default 1). This switches between the full GUI and a simplified
GUI with only the most common settings.

gui-lang = llcode, with a language code value as with the command-line option.
no-checksums = 0 or 1 (default 0, see below).

persistent-downloads = 0 or 1 (default 1), same as command-line option.
require-verification = 0 or 1 (default 0), same as command-line option.

tkfontscale = floating-point number (default 1.0); scaling factor for fonts in the Tk-based
frontends.

update-exclude = comma-separated list of packages (no spaces allowed). Same as the
command line option --exclude for the update action.

verify-downloads = 0 or 1 (default 1), same as command-line option.

The system-wide config file can contain one additional key:

allowed-actions = actionl[,action2,...] The value is a comma-separated list (no spaces)
of tlmgr actions which are allowed to be executed when tlmgr is invoked in system mode
(that is, without --usermode). This allows distributors to include tlmgr in their
packaging, but allow only a restricted set of actions that do not interfere with their distro
package manager. For native TeX Live installations, it doesn’t make sense to set this.

Finally, the no-checksums key needs more explanation. By default, package check-
sums computed and stored on the server (in the TLPDB) are compared to checksums
computed locally after downloading. no-checksums disables this process. The checksum
algorithm is SHA-512. Your system must have one of (looked for in this order) the Perl
Digest: :SHA module, the openssl program (https://openssl.org), the sha512sum pro-
gram (from GNU Coreutils, https://www.gnu.org/software/coreutils), or finally the
shasum program (just to support old Macs). If none of these are available, a warning is
issued and tlmgr proceeds without checking checksums. no-checksums avoids the warning.
(Incidentally, other SHA implementations, such as the pure Perl and pure Lua modules, are
much too slow to be usable in our context.)

B.8 CRYPTOGRAPHIC VERIFICATION

tlmgr and install-tl perform cryptographic verification if possible. If verification is
performed and successful, the programs report (verified) after loading the TLPDB; oth-
erwise, they report (not verified). But either way, by default the installation and/or
updates proceed normally.

If a program named gpg is available (that is, found in PATH), by default cryptographic
signatures will be checked: we require the main repository be signed, but not any additional
repositories. If gpg is not available, by default signatures are not checked and no verification
is carried out, but tlmgr still proceeds normally.

The behavior of the verification can be controlled by the command line and config file
option verify-repo which takes one of the following values: none, main, or all. With none,
no verification whatsoever is attempted. With main (the default) verification is required
only for the main repository, and only if gpg is available; though attempted for all, missing
signatures of subsidiary repositories will not result in an error. Finally, in the case of all,
gpg must be available and all repositories need to be signed.

In all cases, if a signature is checked and fails to verify, an error is raised.

https://openssl.org
https://www.gnu.org/software/coreutils

Appendix B: tlmgr 71

Cryptographic verification requires checksum checking (described just above) to succeed,
and a working GnuPG (gpg) program (see below for search method). Then, unless cryp-
tographic verification has been disabled, a signature file (texlive.tlpdb.*.asc) of the
checksum file is downloaded and the signature verified. The signature is created by the
TeX Live Distribution GPG key 0x0D5E5D9106BAB6BC, which in turn is signed by Karl
Berry’s key 0x0716748A30D155AD and Norbert Preining’s key 0x6CACA448860CDC13.
All of these keys are obtainable from the standard key servers.

Additional trusted keys can be added using the key action.

B.8.1 Configuration of GnuPG invocation

The executable used for GnuPG is searched as follows: If the environment variable TL_GNUPG
is set, it is tested and used; otherwise gpg is checked; finally gpg?2 is checked.

Further adaptation of the gpg invocation can be made using the two environment vari-
ables TL_GNUPGHOME, which is passed to gpg as the value for —~—homedir, and TL_GNUPGARGS,
which replaces the default options ——-no-secmem-warning --no-permission-warning.

B.9 USER MODE

tlmgr provides a restricted way, called “user mode”, to manage arbitrary texmf trees in
the same way as the main installation. For example, this allows people without write
permissions on the installation location to update/install packages into a tree of their own.

tlmgr is switched into user mode with the command line option --usermode. It does
not switch automatically, nor is there any configuration file setting for it. Thus, this option
has to be explicitly given every time user mode is to be activated.

This mode of t1mgr works on a user tree, by default the value of the TEXMFHOME variable.
This can be overridden with the command line option --usertree. In the following when
we speak of the user tree we mean either TEXMFHOME or the one given on the command line.

Not all actions are allowed in user mode; tlmgr will warn you and not carry out any
problematic actions. Currently not supported (and probably will never be) is the platform
action. The gui action is currently not supported, but may be in a future release.

Some tlmgr actions don’t need any write permissions and thus work the same in user
mode and normal mode. Currently these are: check, help, 1ist, print-platform, print-
platform-info, search, show, version.

On the other hand, most of the actions dealing with package management do need
write permissions, and thus behave differently in user mode, as described below: install,
update, remove, option, paper, generate, backup, restore, uninstall, symlinks.

Before using tlmgr in user mode, you have to set up the user tree with the init-
usertree action. This creates usertree/web2c and usertree/tlpkg/tlpobj, and a minimal
usertree/t1lpkg/texlive.tlpdb. At that point, you can tell tlmgr to do the (supported)
actions by adding the —-usermode command line option.

In user mode the file usertree/tlpkg/texlive.tlpdb contains only the packages that
have been installed into the user tree using tlmgr, plus additional options from the “virtual”
package 00texlive.installation (similar to the main installation’s texlive.tlpdb).

All actions on packages in user mode can only be carried out on packages that are known
as relocatable. This excludes all packages containing executables and a few other core

Appendix B: tlmgr 72

packages. Of the 2500 or so packages currently in TeX Live the vast majority are relocatable
and can be installed into a user tree.

Description of changes of actions in user mode:

B.9.1 User mode install

In user mode, the install action checks that the package and all dependencies are all either
relocated or already installed in the system installation. If this is the case, it unpacks all
containers to be installed into the user tree (to repeat, that’s either TEXMFHOME or the value
of ——usertree) and add the respective packages to the user tree’s texlive.tlpdb (creating
it if need be).

Currently installing a collection in user mode installs all dependent packages, but in
contrast to normal mode, does not install dependent collections. For example, in normal
mode tlmgr install collection-context would install collection-basic and other col-
lections, while in user mode, only the packages mentioned in collection-context are
installed.

If a package shipping map files is installed in user mode, a backup of the user’s
updmap.cfg in USERTREE/web2c/ is made, and then this file regenerated from the list of
installed packages.

B.9.2 User mode backup, restore, remove, update

In user mode, these actions check that all packages to be acted on are installed in the user
tree before proceeding; otherwise, they behave just as in normal mode.

B.9.3 User mode generate, option, paper

In user mode, these actions operate only on the user tree’s configuration files and/or
texlive.tlpdb.

B.9.4 User mode logs

In user mode, tlmgr.log and <tlmgr-commands.log> are written in the TEXMFVAR/web2c/
directlry instead of TEXMFSYSVAR/web2c/.

B.10 MULTIPLE REPOSITORIES

The main TeX Live repository contains a vast array of packages. Nevertheless, additional
local repositories can be useful to provide locally-installed resources, such as proprietary
fonts and house styles. Also, alternative package repositories distribute packages that cannot
or should not be included in TeX Live, for whatever reason.

The simplest and most reliable method is to temporarily set the installation source to
any repository (with the -repository or option repository command line options), and
perform your operations.

When you are using multiple repositories over a sustained length of time, however,
explicitly switching between them becomes inconvenient. Thus, it’s possible to tell t1lmgr
about additional repositories you want to use. The basic command is tlmgr repository
add. The rest of this section explains further.

When using multiple repositories, one of them has to be set as the main repository,
which distributes most of the installed packages. When you switch from a single repository

Appendix B: tlmgr 73

installation to a multiple repository installation, the previous sole repository will be set as
the main repository.

By default, even if multiple repositories are configured, packages are still only installed
from the main repository. Thus, simply adding a second repository does not actually enable
installation of anything from there. You also have to specify which packages should be taken
from the new repository, by specifying so-called “pinning” rules, described next.

B.10.1 Pinning

When a package foo is pinned to a repository, a package foo in any other repository, even
if it has a higher revision number, will not be considered an installable candidate.

As mentioned above, by default everything is pinned to the main repository. Let’s now
go through an example of setting up a second repository and enabling updates of a package
from it.

First, check that we have support for multiple repositories, and have only one enabled
(as is the case by default):

$ tlmgr repository list
List of repositories (with tags if set):
/var/www/norbert/tlnet

Ok. Let’s add the tlcontrib repository (this is a real repository hosted at http://
contrib.texlive.info) with the tag tlcontrib:

$ tlmgr repository add http://contrib.texlive.info/current tlcontrib
Check the repository list again:

$ tlmgr repository list

List of repositories (with tags if set):

http://contrib.texlive.info/current (tlcontrib)
/var/www/norbert/tlnet (main)

Now we specify a pinning entry to get the package classico from tlcontrib:
$ tlmgr pinning add tlcontrib classico
Check that we can find classico:

$ tlmgr show classico
package: classico

shortdesc: URW Classico fonts

- install classico:

$ tlmgr install classico
tlmgr: package repositories:

In the output here you can see that the classico package has been installed from the
tlcontrib repository (@tlcontrib).

Finally, tlmgr pinning also supports removing certain or all packages from a given
repository:

$ tlmgr pinning remove tlcontrib classico # remove just classico

http://contrib.texlive.info
http://contrib.texlive.info

Appendix B: tlmgr 74

$ tlmgr pinning remove tlcontrib --all # take nothing from tlcontrib

A summary of tlmgr pinning actions is given above.

B.11 GUI FOR TLMGR

The graphical user interface for tlmgr requires Perl/Tk https://search.cpan.org/
search?query=perl%2Ftk. For Unix-based systems Perl/Tk (as well as Perl of course) has
to be installed outside of TL. https://tug.org/texlive/distro.html#perltk has a list
of invocations for some distros. For Windows the necessary modules are no longer shipped
within TeX Live, so you’ll have to have an external Perl available that includes them.

We are talking here about the GUI built into tlmgr itself, not about the other tlmgr
GUIs, which are: tlshell (Tcl/Tk-based), tlcockpit (Java-based) and, only on Macs, TeX
Live Utility. These are invoked as separate programs.

The GUI mode of tlmgr is started with the invocation tlmgr gui; assuming Tk is load-
able, the graphical user interface will be shown. The main window contains a menu bar,
the main display, and a status area where messages normally shown on the console are
displayed.

Within the main display there are three main parts: the Display configuration area,
the list of packages, and the action buttons.

Also, at the top right the currently loaded repository is shown; this also acts as a button
and when clicked will try to load the default repository. To load a different repository, see
the tlmgr menu item.

Finally, the status area at the bottom of the window gives additional information about
what is going on.

B.11.1 Main display

B.11.1.1 Display configuration area

The first part of the main display allows you to specify (filter) which packages are shown.
By default, all are shown. Changes here are reflected right away.

Status
Select whether to show all packages (the default), only those installed, only
those not installed, or only those with update available.

Category
Select which categories are shown: packages, collections, and/or schemes. These
are briefly explained in the Section B.3 [DESCRIPTION], page 46, section
above.

Match
Select packages matching for a specific pattern. By default, this searches both
descriptions and filenames. You can also select a subset for searching.

Selection

Select packages to those selected, those not selected, or all. Here, “selected”
means that the checkbox in the beginning of the line of a package is ticked.

https://search.cpan.org/search?query=perl%2Ftk
https://search.cpan.org/search?query=perl%2Ftk
https://tug.org/texlive/distro.html#perltk

Appendix B: tlmgr 75

Display configuration buttons
To the right there are three buttons: select all packages, select none (a.k.a.
deselect all), and reset all these filters to the defaults, i.e., show all available.

B.11.1.2 Package list area

The second are of the main display lists all installed packages. If a repository is loaded,
those that are available but not installed are also listed.

Double clicking on a package line pops up an informational window with further details:
the long description, included files, etc.

Each line of the package list consists of the following items:

a checkbox
Used to select particular packages; some of the action buttons (see below) work
only on the selected packages.

package name
The name (identifier) of the package as given in the database.

local revision (and version)
If the package is installed the TeX Live revision number for the installed package
will be shown. If there is a catalogue version given in the database for this
package, it will be shown in parentheses. However, the catalogue version, unlike
the TL revision, is not guaranteed to reflect what is actually installed.

remote revision (and version)
If a repository has been loaded the revision of the package in the repository (if
present) is shown. As with the local column, if a catalogue version is provided
it will be displayed. And also as with the local column, the catalogue version
may be stale.

short description
The short description of the package.

B.11.1.3 Main display action buttons

Below the list of packages are several buttons:

Update all installed
This calls tlmgr update --all, i.e., tries to update all available packages. Be-
low this button is a toggle to allow reinstallation of previously removed packages
as part of this action.

The other four buttons only work on the selected packages, i.e., those where
the checkbox at the beginning of the package line is ticked.

Update
Update only the selected packages.

Install

Install the selected packages; acts like tlmgr install, i.e., also installs depen-
dencies. Thus, installing a collection installs all its constituent packages.

Appendix B: tlmgr 76

Remove

Backup

Removes the selected packages; acts like tlmgr remove, i.e., it will also remove
dependencies of collections (but not dependencies of normal packages).

Makes a backup of the selected packages; acts like tlmgr backup. This action
needs the option backupdir set (see Options - General>).

B.11.2 Menu bar

The following entries can be found in the menu bar:

tlmgr menu

The items here load various repositories: the default as specified in the TeX
Live database, the default network repository, the repository specified on the
command line (if any), and an arbitrarily manually-entered one. Also has the
so-necessary quit operation.

Options menu

Provides access to several groups of options: Paper (configuration of default pa-
per sizes), Platforms (only on Unix, configuration of the supported/installed
platforms), GUI Language (select language used in the GUI interface), and
General (everything else).

Several toggles are also here. The first is Expert options, which is set by
default. If you turn this off, the next time you start the GUI a simplified screen
will be shown that display only the most important functionality. This setting
is saved in the configuration file of t1mgr; see Section B.7 [CONFIGURATION
FILE FOR TLMGR], page 69, for details.

The other toggles are all off by default: for debugging output, to disable the
automatic installation of new packages, and to disable the automatic removal
of packages deleted from the server. Playing with the choices of what is or isn’t
installed may lead to an inconsistent TeX Live installation; e.g., when a package
is renamed.

Actions menu

Help menu

Provides access to several actions: update the filename database (aka 1s-R,
mktexlsr, texhash), rebuild all formats (fmtutil-sys --all), update the font
map database (updmap-sys), restore from a backup of a package, and use of
symbolic links in system directories (not on Windows).

The final action is to remove the entire TeX Live installation (also not on
Windows).

Provides access to the TeX Live manual (also on the web at https://tug.org/
texlive/doc.html) and the usual “About” box.

B.11.3 GUI options
Some generic Perl/Tk options can be specified with tlmgr gui to control the display:

-background color

Set background color.

https://tug.org/texlive/doc.html
https://tug.org/texlive/doc.html

Appendix B: tlmgr 7

-font " fontname fontsize "
Set font, e.g., tlmgr gui —-font "helvetica 18". The argument to ~-font must
be quoted, i.e., passed as a single string.

-foreground color
Set foreground color.

-geometry geomspec
Set the X geometry, e.g., tlmgr gui -geometry 1024x512-0+0 creates the win-
dow of (approximately) the given size in the upper-right corner of the display.

—XIM Tresource
Pass the arbitrary X resource string zresource.

A few other obscure options are recognized but not mentioned here. See the Perl/Tk
documentation (https://search.cpan.org/perldoc?Tk) for the complete list, and any X
documentation for general information.

B.12 MACHINE-READABLE OUTPUT

With the --machine-readable option, tlmgr writes to stdout in the fixed line-oriented
format described here, and the usual informational messages for human consumption are
written to stderr (normally they are written to stdout). The idea is that a program can get
all the information it needs by reading stdout.

Currently this option only applies to the Section B.6.31 [update], page 66, Section B.6.13
[install], page 56, and Section B.6.16 [option], page 58, actions.

B.12.1 Machine-readable update and install output
The output format is as follows:

fieldname "\t" value

"end-of-header"
pkgname status localrev serverrev size runtime esttot

"end-of-updates"
other output from post actions, not in machine readable form

The header section currently has two fields: location-url (the repository source from
which updates are being drawn), and total-bytes (the total number of bytes to be down-
loaded).

The localrev and serverrev fields for each package are the revision numbers in the local
installation and server repository, respectively. The size field is the number of bytes to
be downloaded, i.e., the size of the compressed tar file for a network installation, not the
unpacked size. The runtime and esttot fields are only present for updated and auto-install
packages, and contain the currently passed time since start of installation/updates and the
estimated total time.

Line endings may be either LF or CRLF depending on the current platform.

https://search.cpan.org/perldoc?Tk

Appendix B: tlmgr 78

location-url [ocation
The location may be a url (including file:///foo/bar/...), or a directory
name (/foo/bar). It is the package repository from which the new package
information was drawn.

total-bytes count
The count is simply a decimal number, the sum of the sizes of all the packages
that need updating or installing (which are listed subsequently).

Then comes a line with only the literal string end-of-header.

Each following line until a line with literal string end-of-updates reports on one pack-
age. The fields on each line are separated by a tab. Here are the fields.

pkgname
The TeX Live package identifier, with a possible platform suffix for executa-
bles. For instance, pdftex and pdftex.i386-1linux are given as two separate
packages, one on each line.
status
The status of the package update. One character, as follows:
d
The package was removed on the server.
f
The package was removed in the local installation, even though
a collection depended on it. (E.g., the user ran tlmgr remove
--force.)
u
Normal update is needed.
r
Reversed non-update: the locally-installed version is newer than
the version on the server.
a
Automatically-determined need for installation, the package is new
on the server and is (most probably) part of an installed collection.
i
Package will be installed and isn’t present in the local installation
(action install).
I
Package is already present but will be reinstalled (action install).
localrev
The revision number of the installed package, or - if it is not present locally.
serverrev

The revision number of the package on the server, or - if it is not present on
the server.

Appendix B: tlmgr 79

size
The size in bytes of the package on the server. The sum of all the package sizes
is given in the total-bytes header field mentioned above.

runtime
The run time since start of installations or updates.

esttot

The estimated total time.

B.12.2 Machine-readable option output
The output format is as follows:
key "\t" value
If a value is not saved in the database the string (not set) is shown.

If you are developing a program that uses this output, and find that changes would be
helpful, do not hesitate to write the mailing list.

B.13 ENVIRONMENT VARIABLES

tlmgr uses many of the standard TeX environment variables, as reported by, e.g., tlmgr
conf (Section B.6.7 [conf], page 52).

In addition, for ease in scripting and debugging, t1lmgr looks for the following environ-
ment variables. These are not of interest for normal user installations.

TEXLIVE_COMPRESSOR
This variable allows selecting a different compressor program for backups and
intermediate rollback containers. The order of selection is:

1. If the environment variable TEXLIVE_COMPRESSOR is defined, use it; abort
if it doesn’t work. Possible values: 1z4, gzip, xz. The necessary options
are added internally.

2. If 1z4 is available (either from the system or TL) and working, use that.
3. If gzip is available (from the system) and working, use that.

4. If xz is available (either from the system or TL) and working, use that.

1z4 and gzip are faster in creating tlmgr’s local backups, hence they are pre-
ferred. The unconditional use of xz for the tlnet containers is unaffected, to
minimize download sizes.

TEXLIVE_DOWNLOADER

TL_DOWNLOAD_PROGRAM

TL_DOWNLOAD_ARGS
These options allow selecting different download programs then the ones auto-
matically selected by the installer. The order of selection is:

1. If the environment variable TEXLIVE_DOWNLOADER is defined, use it; abort
if the specified program doesn’t work. Possible values: lwp, curl, wget.
The necessary options are added internally.

Appendix B: tlmgr 80

2. If the environment variable TL_DOWNLOAD_PROGRAM is defined (can be any
value), use it together with TL_DOWNLOAD_ARGS; abort if it doesn’t work.

3. If LWP is available and working, use that (by far the most efficient method,
as it supports persistent downloads).

4. If curl is available (from the system) and working, use that.
5. If wget is available (either from the system or TL) and working, use that.

TL provides wget binaries for platforms where necessary, so some download
method should always be available.

TEXLIVE_PREFER_OWN
By default, compression and download programs provided by the system, i.e.,
found along PATH are preferred over those shipped with TeX Live.

This can create problems with systems that are too old, and so can be overridden
by setting the environment variable TEXLIVE_PREFER_OWN to 1. In this case,
executables shipped with TL will be preferred.

Extra compression/download programs not provided by TL, such as gzip, lwp,
and curl, are still checked for on the system and used if available, per the
above. TEXLIVE_PREFER_OWN only applies when the program being checked for
is shipped with TL, namely the 1z4 and xz compressors and wget downloader.

Exception: on Windows, the tar.exe shipped with TL is always used, regard-
less of any setting.

B.14 AUTHORS AND COPYRIGHT

This script and its documentation were written for the TeX Live distribution (https://
tug.org/texlive) and both are licensed under the GNU General Public License Version 2
or later.

$Id: tlmgr.pl 70001 2024-02-19 23:17:07Z karl $

B.15 POD ERRORS

Hey! The above document had some coding errors, which are explained below:

Around line 8454:
Unterminated C<...> sequence

https://tug.org/texlive
https://tug.org/texlive

Index

$

$0 target in normal make rules................... 3
--bindir configure option 25, 26
--build=host............. i 9
--disable-all-packagesovinnn 6
--disable-all-pkgs............oiiiiiiiiinnn. 27
--disable-bibtex8......... 28
--disable-bibtexu...............l 28
--disable-dump-share 27
--disable-dvipdfmx............. 28
--disable-etex-synctex...................... 28
—-disable-ipc il 27
--disable-largefile.......................... 25
--disable-linked-scripts.................... 29
--disable-mf-nowin.................... 27
--disable-missing............. ... 26
--disable-native-texlive-build............. 25
--disable-prog ...l 27
--disable-synctex.................. 28
--disable-texXx ... 27
--disable-web-progs............. 27
--disable-xdvipdfmx................. 28
--enable-*win for Metafont window support. .. 28
--enable-auto-core........................... 27
--enable-compiler-warnings=level........... 26
--enable-cxx-runtime-hack................... 16
--—enable-etex i, 27
—-enable-libtool-hackooouuinn. 28
--enable-maintainer-mode 14, 26
--enable-missing to ignore dependencies....... 7
--enable-mktextfm-default................... 19
--enable-multiplatform...................... 26
-—enable-prog ...l 27
--enable-shared 26
--enable-silent-rules....................... 26
--enable-tex-synctex 28
--enable-texlive-build...................... 25
--enable-xi2-scrolling...................... 29
—--enable-xindy-docs............... 29
--enable-xindy-rules 29
--host=host................. 9
—-1libdir configure option.................... 26
--no-print-directory GNU make option....... 8
—-prefix configure option.................... 25
--with-banner-add=str....................... 27
--with-clisp-runtime=filename.............. 29
—-with-editor=cmd..................... 27
--with-fontconfig-includes=dir............. 27
--with-fontconfig-libdir=dir............... 27
--with-gs=filename........................... 29

--with-lib-includes=dir, -1libdir............ 29

81

--with-libgs-includes, -libdir.............. 28
--with-system-kpathsea...................... 19
—-with-system-Iib........................ 23, 29
--with-system-libgs.......................... 28
-—with-xdvi-x-toolkit 20
—-with-xdvi-x-toolkit=kit................... 29
--without-1libgs.............................. 28
——without-ln-s 26
——without-X.... ..o 26
-C configure option.................. 5
—jmake option........... ... o il 5

A

ac/withenable.ac..........c.oouviiiiinnneon... 22
adapting TEX Live for distros.................. 13
adding a new engine 23
adding a new generic library 23
adding a new program, 21
adding a new TEX-specific library 24
adding to TEX Livet 21
am/ top-level directory 14
ANSL Coo 31
ApplicationServices Mac framework, required by

XELOX .ot 3
asymptote o ool 12, 21
Autoconf ... 2
autoconf macroso i 15
Automake 2
autoreconf, for new program 22

DAber. .. e 12
bibtex-x..... 28
bibtex8 28
bibtexu...... 28
BSD diStro ...o.vviiiii 12
build directory, required............... 5
build iteration o i 5
build on demand oo 6
build one engine oo 7
build one package............ oL [§
Build SCript. ...vvvue e 5
build system, design of L. 2
build-aux/ top-level directory 15
BUILDCC, BUILDCFLAGS, . . .\ 'oiveeieaennnn.. 9
building.......... ... 5
building a distribution oo 5
building in parallel 5

Index

C

C++11, removing dependent sources 7
C++ll, requiredcovviiii i 3
C, ANSI, required...........ooiiiiiii.. 31
C99, avoidedooo 31
cache file, for configure 5
cache for configure.............. oL 5
CAL1EXE.C vttt et 18
CC et 30
CC=c-compiler.................cooiiii ... 7
CC_BUILD ...ttt e e 9
Changelogooiiiiiiiiiiii i 22
chktex. 31
Clisp........ 30
clisp, required by xindy................ 3
CLISP e 29, 30
Cocoa Mac framework, required by xetex........ 3
coding conventions............... 31
compilers, Cand C++11......................... 3
config.guess, config.sub, 15
configure options.................. 25
configure options, for bibtex-x............... 28
configure options, for dvipdfm-x.............. 28
configure options, for dvisvgm................ 28
configure options, for kpathsea............... 29
configure options, for texk/texlive........... 29
configure options, for web2c............. 27
configure options, for xdvik................... 29
configure options, for xindy................... 29
configure options, global 25
configure options, library-specific............. 29
configure options, program-specific............ 27
configure problems, work around by removing.. 7
configure variables................. 30
configure.ac................. ..ol 22
configuring, for cross compilation................ 9
COMSt .ottt 32
continuous integration 33
conventions, coding 31
CPPFLAGS . ..ot e 30
cross compilation ool 8
cross compilation configuring.................... 9
cross compilation problems...................... 9
cross compilation, with host binary............. 20
ctangle ...l 10
(65 P 30
CXX=c++-compiler................... 7

D

declarations and definitions, in source code.. ... 31
declarations before statements, avoiding........ 31
dependencies, with several output files........... 5
DESTDIR ...ttt 25
directories, for installation 11
directories, top-level L. 14
discards qualifiers warning 32

dist and distcheck targets for make............ 5

82
distribution tarball, making 5
distro, building for................. ... oL 12
dvipdfm-x........ ... 28
dvipdfmxo 28
dvisvgm ... 28
dvisvgm, requires C++11 3
E
engine, adding new............... 23
engine, buildingone............. ...l 7
environment variables, for configure........... 25
exec_prefiX......... ool 26
extending TRX Live........ 21
extern functions........o 31
F
flags, macros for library and header 17
fontconfig library, required by xetex........... 3
freetype cross compiling.................. 9
freetype library.......o 19
FreeType, requires gmake........................ 3
freetype-config............ ...l 19, 30
FT2_CONFIG. ... ittt it 30
G
gec, default compilers............. .. oo 7
general setup macros. ..., 15
generic library module, adding 23
Ghostscript location for Xdvik 29
git-svn ... 33
global configure options....................... 25
gmake, required oL 3
GNU make, required..........c.coooviiiiniennn .. 3
GNU tools, needed for building 14
GNU/Linux distro............coooiiiiiian... 12
Gnulib, used for common files.................. 15
H
HarfBuzz, requires C++11 3

Index

|

icu-config............. il 30
ICU cross compiling 10
ICU libraries. ..ot 30
ICU, requires C++11 ...t 3
ICU_CONFIG. ..ottt 30
infrastructure, tools needed for................. 14
inst/ top-level directory....................... 15
install-tl, TEX Live installer................. 11
installation directories, 11
installingo oo 11
interprocess communication 27
introduction o i 1

iteration through sources, by configure and make.5

K

kpathsea library............ol 19
kpathsea.ac....................l 19
kpse-libpng-flags.m4 19
kpse-pkgs.m&. 2
kpse-zlib-flags.m4........................... 19
kpse_cv_cxx_hack........... ool 16
kpse_cv_have_win32........................... 18
kpse_cv_visibility_c[xx]flags.............. 16
kpse_cv_warning_cflags...................... 16
kpse_libs_pkgs ..ottt 23
kpse_texk_pPKgSl 21
kpse_texlibs_pkgs..............oiiiiiiiiin 24
kpse_utils_pkgs............ol 21
KPSE_ADD_FLAGSo 17
KPSE_ALL_SYSTEM_FLAGS 23
KPSE_BASIC..... ... 15
KPSE_CHECK_LATEX oo, 16
KPSE_CHECK_PDFLATEX............... ...t 16
KPSE_CHECK_PERL oo, 16
KPSE_CHECK_WIN32........ ..., 18
KPSE_COMMON.coiiiii it 15
KPSE_COMPILER_VISIBILITY.................... 16
KPSE_COMPILER_WARNINGS 16
KPSE_COND_MINGW32........ ..., 18
KPSE_COND_WIN32.......coiiuiiiiiiiiiiiinn., 18
KPSE_COND_WIN32_WRAPt 18
KPSE_CXX_HACKt 16
KPSE_ENABLE_PROG...........cooviiiiiiiiinnn.. 21
KPSE_LARGEFILE, 16
KPSE_LIB_FLAGS............. ..o, 17, 23
KPSE_LIB_SYSTEM_FLAGS 23
KPSE_LIBPNG_FLAGSt 17, 19
KPSE_PROG_LEXt 16
KPSE_RESTORE_FLAGS.......... ..., 17
KPSE_TRY_LIB.........ciiiiiiiiiiiii., 18, 23
KPSE_TRY_LIBXX......... ..., 19, 23
KPSE_WIN32_CALL it 18
KPSE_WITH_LIB.........coiiiiiiiiiiiiinn., 23
KPSE_WITH_TEXLIB........... ..., 24
kpsewhich.............l 30

KPSEWHICH...... ..o 30

83

L
large file support......... oL 25
LATEX . e e 30
layout of sources...........covviiiiiiiiiii.... 14
LFS (large file support) 25
libexpat, dependency of libfontconfig....... 28
libfontconfig, hack for avoiding linking

dependencies.........oooiiiiiiiiiiiiiiii 28
libfreetype................. ...l 30
libfreetype, and const 32
libpng library i 18
library module, generic, adding................. 23
library module, TEX-specific, adding 24
library modules.............. ... oo i 18
library-specific configure options.............. 29
libsigsegv, required by xindy.................. 3
libstc++, statically linking 16
Libtool ... 2
libtool, hack for avoiding excessive linking.... 28
1ibXt. . 27
linked SCripts ... 11
linking C++ libraries statically.................. 16
lisp.run, lisp.exe............oiiiiin., 29
LittleEndian architectures...................... 27
M
m4/ top-level directory 14
macros, for compilers oL 16
macros, for libraries.............. ... i 16
macros, for library and header flags 17
macros, for programs. ... 16
macros, for Windows............... 17
macros, general setup 15
make =to 14
make rules, verbose vs. silent 26
Makefile.am.........covviiiiiiiininannnnnnn .. 22
MAKE . . 30
mf-nowin 27
Mingw32 9
MINGW32, Automake conditional 18
mktex.ac 19
mktextfm..... 19
modules, for libraries................, 18
modules, for programs 20
motif 29
N
native cross compilation................ 8
newprog-src, original source subdirectory....... 21

Index

@)

0BJCXX=objc-compiler.......................... 7
one engine, building............ oo 7
one package, building oL 6
OpenGL, required for Asymptote............... 21
operating system distribution, building for...... 12
otangle ... 10
overall build process 5

P

parallel build......... 5
paths, for installation 11
PDF files, size of 25
PDFLATEX . .ot 30
perl, required by web2c, etc..................... 3
PERL . .o 30
PKG_CONFIG.ttt 30
plain.tex, not in source tree 11
pug library........ ..o 18
PostScript files, size ofo 25
Preining, Norbert, 13
preloaded binaries o ool 27
prerequisites for building.................. 3
program module, adding 21
program modules i 20
program-specific configure options 27
proxy build system.........o o 19
Python, required by ICU........................ 3

R

reautoconf 14
reautoconf, for new program 22
removing build directories....................... 7
requirements for building.................. 3
TUNSCript.eXe ...t 18

S

scripts, linked and not maintained.............. 11
scrolling, smooth 29
SED e 30
setup macros, general 15
shared libraries, using vs. avoiding 12
size of PDF and PSfiles 25
size of source tree........ ..., 7
source code declarations........................ 31
source directory building, not supported......... 5
SOUICE tr€€ttt 14
SQUEEZE ..\ttt 9
squeeze/configure.acl 20
static functions........... ... ol 31
static linking for C++ 16
7 1) o) O 31
Subversion repository oL 14

84
symlinks, used for scripts....................... 11
SYNCEeX .. oo vt 28
system distribution, building for................ 12
T
tlutils packageoovviiiiiiiiiii 20
tangle.............. 10
tests, running o o ool 2
TEX-specific library module, adding 24
texlive.tlpdb, TEX Live database............. 11
TEXMFCNF for running standalone 6
TEXMFROOT for running standalone............... 6
5 =P 10
timestamps, in repository, 14
TL_MAKE_FLAGS.0ttt 5
TLpatches/patch—.cooiiiiiiieininnn... 22
TLpatches/TL-Changescoou.. 22
tools, for building............ol 14
top-level directories............ ...t 14
touching files to avoid rerunning 14
Travis-ClL. ... e 33
travis.yml......... .. 34
type cast from const, avoiding.................. 32
U
use-commit-times, Subversion................. 14
\%
variable declarations, in source code............ 31
variables for configure 30
\%%
warning, discards qualifiers..................... 32
WARNING_CLXXIFLAGS......ovviiiiinnnnnnnnnn... 16
WED2C PrOgramll.ovviiiiiiiiiiiiiiiiiiinnnnns 9
Web2C.aC ... 27
WEEL 12
WIN32, Automake conditional................... 18
WIN32_WRAP, Automake conditional............. 18
Windows, invoking scriptson 11
Windows, macros for........... 17
withenable.ac, for new modules............... 21
Work/ top-level directory 15
wrapper binary for scripts on Windows......... 11
wrapper build system oL 19

Index

X

Xtoolkit oo 27
X11 development, required by X clients.......... 3
X11 headers, and const............cooiiian, 32
KBS vttt et 21
b= 29
XAVIK . 20, 29
xAvipdfmx 28

Xindy ...

85

	1 Introduction
	2 Overview of build system
	3 Prerequisites
	4 Building
	Build iteration
	Build in parallel
	Build distribution
	Build one package
	Build one engine
	Cross compilation
	Cross configuring
	Cross problems

	5 Installing
	Installation directories
	Linked scripts
	Distro builds

	6 Layout and infrastructure
	Build system tools
	Top-level directories
	Autoconf macros
	General setup macros
	Macros for programs
	Macros for compilers
	Macros for libraries
	Macros for library and header flags
	Macros for Windows

	Library modules
	The png library in libs/libpng
	The zlib library in libs/zlib
	The freetype library in libs/freetype2
	The kpathsea library in texk/kpathsea

	Program modules
	The t1utils package in utils/t1utils
	The xindy package in utils/xindy
	The xdvik package in texk/xdvik
	The subdirectory utils/asymptote

	Extending
	Adding a new program module
	Adding a new engine
	Adding a new generic library module
	Adding a new TeX-specific library module

	7 Configure options
	Global configure options
	--disable-native-texlive-build
	--prefix, --bindir, ...
	--disable-largefile
	--disable-missing
	--enable-compiler-warnings=level
	--enable-cxx-runtime-hack
	--enable-maintainer-mode
	--enable-multiplatform
	--enable-shared
	--enable-silent-rules
	--without-ln-s
	--without-x

	Program-specific configure options
	--enable-prog, --disable-prog
	--disable-all-pkgs
	Configure options for texk/web2c
	Configure options for texk/bibtex-x
	Configure options for texk/dvipdfm-x
	Configure options for texk/dvisvgm
	Configure options for texk/texlive
	Configure options for texk/xdvik
	Configure options for utils/xindy

	Library-specific configure options
	Configure options for kpathsea

	Variables for configure

	8 Coding conventions
	Declarations and definitions
	Const

	9 Continuous integration
	Transfer from Subversion to Github
	Automatic update of the Git mirror
	CI testing on Travis-CI
	Releases on Github

	A install-tl
	install-tl NAME
	install-tl SYNOPSIS
	install-tl DESCRIPTION
	REFERENCES
	install-tl EXAMPLES
	install-tl OPTIONS
	PROFILES
	ENVIRONMENT VARIABLES
	DIRECTORY TREES
	install-tl BUGS
	AUTHORS AND COPYRIGHT

	B tlmgr
	tlmgr NAME
	tlmgr SYNOPSIS
	tlmgr DESCRIPTION
	tlmgr EXAMPLES
	tlmgr OPTIONS
	ACTIONS
	help
	version
	backup
	bug [search-string]
	candidates pkg
	check [option...] [depends|executes|files|runfiles|texmfdbs|all]
	conf
	dump-tlpdb [option...] [--json]
	generate
	gui
	info
	init-usertree
	install [option...] pkg...
	key
	list
	option
	paper
	path
	pinning
	platform
	postaction
	print-platform
	print-platform-info
	remove [option...] pkg...
	repository
	restore
	search
	shell
	show
	uninstall
	update [option...] [pkg...]

	CONFIGURATION FILE FOR TLMGR
	CRYPTOGRAPHIC VERIFICATION
	Configuration of GnuPG invocation

	USER MODE
	User mode install
	User mode backup, restore, remove, update
	User mode generate, option, paper
	User mode logs

	MULTIPLE REPOSITORIES
	Pinning

	GUI FOR TLMGR
	Main display
	Display configuration area
	Package list area
	Main display action buttons

	Menu bar
	GUI options

	MACHINE-READABLE OUTPUT
	Machine-readable update and install output
	Machine-readable option output

	ENVIRONMENT VARIABLES
	AUTHORS AND COPYRIGHT
	POD ERRORS

	Index

