June 1981 .

Michacl F. Plass

Department of Computer Science

Stanford University
Stanferd, CA 94305

Report. No. STAN-CS-81-870

Optimal Pagination Techniques
for Automatic Typesetting Systems

INFORMATION
UL 141382

YSTEMS

Cn
N

)

)

M

Optimal Pagination Techniques

for Automatic Typesetting Systems

Michael F. Plass

Computer Science Department
Stanford University
Stanford, California 94305

© Copyright 1981 by Michael Frederick Plass

This report reproduces a dissertation submitted to the Department
of Computer Science and the Committee on Graduate Studies of
Stanford University in partial fulfillment of the requirements for
the degree of Doctor of Philosophy. It is also available as Xerox
technical report ISL-81-1.

Key words and phrases: Composition, Dynamic programming,
Layout, NP-Completeness, Pagination, Shortest paths, Typesetting.

This research and printing was supported in ‘part by National Science Foun-
dation grants MCS-77-23738 and IST-7921977, and by Xerox Corporation.
Reproduction in whole or part is permitted for any purpose of the United
States Government.

Optimal Pagination
Techniques for Automatic

Typesetting Systems

A DISSERTATION
SUBMITTED TO THE
DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Michael Frederick Plass

June 1981

OPTIMAL PAGINATION TECHNIQUES
FOR AUTOMATIC TYPESETTING SYSTEMS

Michael Frederick Plass, PhD
Stanford University, 1981

Abstract: This thesis considers how to use a computer to break a document
into pages suitable for printing. Although this problem is easy to solve when
the document consists of just text, it becomes complicated when footnotes,
displays, and figures are introduced. These elements add some freedom of
choice in the way breaks are chosen, since the white space around the displays
and the exact placement of the figures can be decided by the pagination
algorithm. Out of the many possible ways to paginate such a document, the
pagination algorithm should pick the one that is in some sense optimal. The
approach taken here is to define a badness function that depends on the way
the document is broken up, and then to design an algorithm to find a way
to minimize the value of this function.

The document is modelled by two lists, the text list and the ﬁgure list.
Each item in the text list is either a ‘box’, corresponding to something that
will print such as a line of text, a ‘glue’ item, corresponding to the white
space between the lines, a ‘penalty’ item, corresponding to a legal place to
break the list, or a ‘citation’, marking a reference to one of the figures. The
items in the figure list indicate the size of each figure, and by how much each
figure is allowed to stretch or shrink. This model is based on the one used
in the TEX typesetting system.

The optimizing pagination algorithm uses dynamic programming to find,
for each %, 5, and k, the best way to put the first 7 lines of text and the first
7 figures onto the first k pages; to make the program run in a reasonable

amount of time, this calculation includes énly those subproblems that are
feasible, i.e., likely to lead to a solution with a small badness value.

The badness function must be chosen carefully in order to get a problem
that can be solved by these techniques. For certain simple badness functions,
the pagination problem is- NP-complete; two ‘such functions are described in
the thesis.

il

Acknowledgements

THE GREATEST DEBT of gratitude that I owe concerning this thesis is
to my advisor, Donald Knuth. In addition to conscientiously reading the
draft and making hundreds of suggestions for its improvement, he made it
all possible in the first place by making typesetting into a valid topic for
research. And without TEX, the typesetting of the thesis in its present form
would not have been possible. For this, and for his unerring advice while I
worked under him, I give him my wholehearted thanks.

My thanks, also, to the other members of my reading committee, Luis
Trabb Pardo, Andrew C. Yao, and Leo Guibas, who also made thoughtful
comments on the contents of the thesis.

My wife, Susan, I thank for her continuing encouragement and for finding
the quotation for the last chapter. _ _

And I would also like to thank my parents for always encouraging my
academic achieveinents, while never putting pressure on me to succeed.

v

Chapter 1. Introduction.

Practices of early printers .
Footnotes . .

The badness function .
The model.

Advanced uses of penalties and glue

Chapter 2. Some NP-complete Pagination Problems

‘What efficient means

The quadratic badness function

Singly referenced figures.

The zero-one badness function . _ .
The zero-one badness function with ordered figures .

Chapter 3. Dynamic Programming for Pagination

Pagination with no figures.
Introducing figures .

Making the algorithm more general.

A different generalization .

Chapter 4. hhplementa‘oion

The algorithm .
Variations.

Chapter 5. Connections .
Early typesetting systems .
Procedural vs. declarative .
Batch vs. interactive .
Problems for further research

Bibliography .

Contents

Page
1

3
6
.. 8
.. 10

12

17

18
... 20
.
27
34

43

44
46
48
50

. . B5

59
65

67
67
68
69
70

71

List of Nlustrations

Figure 1.1.
Figure 1.2.

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.

One way to paginate a little book
Another way

Truth value settings in construction for vz
Clause encoding in construction for vz .
Embedding function for clause of vz .

Truth value settings for vz with constant page size .
Embeddings for the various possible truth values. .

Embedding for a small example of oz.

vi

Page

29
29
31
32
34
39

Chapter 1

Introduction

There ts nothing on earth more exquisite
than a bonny book, with well-placed columns
of rich black writing in beautiful borders,
and illuminated pictures cunningly inset.
But nowadays, instead of looking at books,
people read them. -— G. B. Shaw

WHEN COMPUTERS were first applied to typesetting two decades ago, they
were programmed- to handle the routine decisions, leaving the exceptional
cases to be handled by a human. This is still true today. However, the art of
developing these systems has progressed, and things that used to be excep-
tional are now considered to be routine. As an example, early systems could
break paragraphs into lines, but they needed help from a human to hyphenate
words when required. Later systems could hyphenate, but frequently failed
to find a way to hyphenate a word or hyphenated erroneously, thus requiring
intervention. Today’s better systems need only occasional help for hyphena-
tion. Pagination, the process of breaking a document into pages suitable
for printing, is analogous to line breaking in many ways; however, it can be
more complicated. For simple text, as in a novel, for example, pagination is
trivial. However, as the text becomes more complex with the introduction of
footnotes, displayed formulas, tables, diagrams, and illustrations, pagination
becomes much more difficult, to the extent that every present-day typeset-
ting system needs occasional help to perform this task satisfactorily. The
thrust of the present work is to investigate ways of making pagination more
routine, so that the computer can almost always do a satisfactory job, leaving
comparatively few exceptional cases to be cleaned up by some overworked
human.

Optimal Pagination Techniques

1 2
3 5
— (1) (3) [4
(4) -
(5)
(2)
page 1 page 2 page 3 page 4

Figure 1. One way to paginate a little book.

As an example of the kinds of complexities that can arise in pagination,
consider figure 1. The horizontal lines in this figure represent lines of text,
and the boxes with numbers inside represent illustrations. The numbers in
parentheses indicate where in the text the illustrations are cited. This must
be some sort of children’s book, because there is only room for ten lines of
text on each page, and there are many illustrations for a book of this size.
So imagine a second-grader sitting down to read this booklet. On the first
page, she reads the part where the book talks about the first picture, and
there it is, right in front of her. When she starts reading about (2), there
is a bit of suspense before she turns the page and sees what it’s all about.
Perhaps this little bit of suspense is desirable, but maybe it only annoys her.
As she reads about (3) and (4), she has to look ahead at the next page, but
that is not so bad because the book is bound so that pages two and three
face each other. (The division between two facing book pages is called the
‘gutter’, so a reference that crosses such a boundary might be known as a
‘gutter reference’.) When she gets to (5), though, she has to turn the page
to find the picture, and there is a good deal of text to come back and read
after she has looked at picture 5. This time it isn’t even good for suspense,
it is just annoying. "

The placement of the illustrations in figure 1 follows a simple rule: when a
citation is encountered, put the illustration on the next page that has room
for it, but not before any earlier illustration. This is the kind of rule used by
most typesetting systems that allow ‘floating’ insertions. Such a feature is
handy to have, but,—as in this example—there are times when a good deal
of improvement can be made.

Introduction

—(2)—"" i(‘;)-

(5)

page 1 page 2 page 3 page 4

Figure 2. Another way.

Figure 2 shows a better way of paginating this little book. The problem
with picture 2 has been alleviated by moving a line from page 1 to page 2,
leaving a little more white space on page 1. By moving picture 3 to page 2,
enough space has been freed on page 3 for picture 5, thus solving the other
problem handily. Note that these two changes do not interfere with each
other; but if citation (5) had occurred one line later, they could not both be
made. This illustrates that the way early page boundaries are chosen can
influence how later breaks are made, and vice versa. To do a really good job,
the pagination routine should therefore consider the book (or chapter) as a
whole.

The art of printing is about 500 years older than the use of computers, so
it is appropriate to take at least a brief look at how compositors of the past
have dealt with pagination. The earliest printers did not publish descriptions
of the methods of their craft, preferring to pass this information down by
way of tradition and apprenticeship. Therefore what we know about their
methods has been deduced primarily by examining their work; fortunately,
the quality of the paper and ink they used was sufficiently good that some
of their products have lasted into our own time.

According to an account by Douglas McMurtrie [1], the first illustrated
books were printed by Albrecht Pfister starting in 1460, about 15 years after
movable types had come into practical use. The illustrations were done by
using woodcuts, and at first they were all full page illustrations printed on
a separate press run from the text. Not until 1472 did a book appear with
the text and illustrations printed in the same impression; this technique

PRACTICES
OF EARLY
PRINTERS

MOXON'’S
ACCOUNT

Optimal Pagination Techniques

was first mastered by Giinther Zainer. The use of woodcuts continued to
increase and develop until the last part of the eighteenth century, although
in the later years the ballooning volume brought a corresponding decrease in
quality. The introduction of lithography brought to an end the widespread
use of woodcuts for book illustration. We can only guess about how the early
printers undertook the task of fitting the copy in with the figures; it is clear
that, with the labor involved in making the woodcuts and hand-setting the
type, any time used in the planning of the book was time well spent.

The first printer to describe in print the details of his craft was Joseph
Moxon, whose Mechanick Exercises on printing began to come out in parts
in 1683 [2]. He described the techniques of hand composition in such detail
that his words were copied by later authors of printer’s handbooks. Thus,
although there are only about fifty extant copies of the edition printed by
Moxon, and although the only reprint prior to 1958 was a limited edition, the
work was of great value to printers up until the end of the nineteenth century,
when the Linotype and Monotype machines were introduced. Moxon’s book
remains to be of interest to those who, for artistic or recreational purposes,
still use hand composition.

Mozxon does not say a great deal about pagination, probably relying on the
common sense of the compositor to solve any tricky problems as they were
encountered. He does have this to say concerning widow lines:

When in Composing he comes near a Break, he for some Lines
before he comes to it considers whether that Break will end
with some reasonable White; If he finds it will, he is pleas’d,
but if he finds he shall have but a little single Word in his
Break, he either Sets wide to drive a Word or two more into
the Break-line, or else he Sets close to get in that little Word,
because a Line with only a little Word in it, shews almost
‘like a. White-line, which unless it be properly plac’d, is not
pleasing to a curious Eye.

Nor do good Compositors account it good Workmanship
to begin a Page with a Break-line, unless it be a very short
Break and cannot be gotten in the foregoing Page; but if it
be a long Break, he will let it be the Direction-line of the
fore-going Page, and Set his Direction at the end of it.

The meaning of this passage is not readily apparent unless we know the
terminology used. A break is the white space used to fill out a short line,
such as the last line of a paragraph. In the first paragraph Moxon tells us

Introduction

that a compositor should avoid setting only a single short word at the end
of a paragraph, even though to do this it is necessary to look ahead. To
understand the meaning of the second paragraph, it is necessary to know
that it was the custom in Moxon’s time to typeset, in the lower right hand
corner of each page, the first word or syllable of the next page. This word
is called the direction, and the line it is set in is called the direction-line.
So Moxon'’s remedy for the widow line was to put it in the normally empty
space before the direction on the previous page, provided that it fit.

Notice that Moxon says nothing about looking ahead to avoid the widow,
in a fashion analogous to the look-ahead for line breaking. Perhaps this was
because it would have been too hard for the compositor to look ahead that
far, or maybe the availability of the easy solution of filling up the direction-
line made a more complicated method unnecessary.

In Moxon’s time, each page was made up as soon as the compositor had
set enough lines to fill a page. This made revision of the typeset text into
a time consuming and error-prome process, as it was sometimes necessary
to unlock several pages of type in order to move lines between them, if the
revision resulted in more or fewer lines than the original text. Moxon gives
a detailed account of this correction process.

Early in the nineteenth century, the practice of setting the type in long
galleys originated in newspaper offices. The type was printed, proofread, and
corrected in this form before it was finally broken into pages for imposition
and printing. This made the correction of the text much easier, and allowed a
division of labor between the person who composed the lines and the one who
made up the pages. This division of labor became more pronounced after
the introduction of the Linotype and the Monotype—these machines made
the process of typesetting the lines into a keyboard activity. But neither of
these machines could assemble type into pages, nor could they handle the
complexities of mathematical formulas. The building up of these formulas,
addition of diagrams, separation into pages, insertion of displayed lines and
pages, and the locking up of type into pages still had to be done by hand.
The compositor responsible for these tasks was called the ‘maker-up’ [3,4].

The job of the maker-up is one that he often cannot perform satisfactorily
without the help of the author. T. L. DeVinne [5] makes this clear when
he exhorts the author to read the proof, and warns that he will surely find
“subheadings, footnotes, extracts, tables; and illustrations contrary to the
plan of the copy and in unexpected positions.” The proofreader and the

ORIGIN OF
THE GALLEY

THRE
AUTHOR"S
RESPONSIBILITY

6 Optimal Pagination Techniques

maker-up (and; we might add, the automatic typesetting system) cannot
rearrange the composition without instructions from the author. The author
alone has the authority and responsibility to insert or delete lines around a
table or illustration that may prevent proper make-up.

FOOTNOTES DeVinne also has something to say about footnotes, calling them a “hin-
drance in composition and making-up.” Most troublesome is a long note that
is cited on the last line of the page—this must be split up and continued
on successive pages. He gives an example of a particularly trying use of
footnotes, printed in 1740. The sample page has but five lines of main text,
and some seventy-four lines of footnotes, set in two columns. These notes
are also annotated, and the footnotes to the footnotes occupy twelve more
lines of six-point type. DeVinne tells us that this is not atypical of the book,
but that this page was selected as an example because it was one of the few
that could be intelligibly reproduced.

Footnotes must have been in disfavor at the time Moxon wrote, for he
makes no mention of them in his work. Neither does he say anything about
the making-up of tables and illustrations, although engravings do-appear in
his book. These engravings are plates that each occupy a full page, and so
do not pose major problems to the maker-up. Moxon does describe how to
compose side-notes (both cut-in and marginal), so this must have been his
preferred method of annotation.

LEADING The spacing between lines, called the leading by typographers, is an im-
THE LINES portant element in the appearance of the printed page. The leading between

e nooens normal lines of text should generally not be varied, once a suitable value has
been decided upon; the leading between larger units is subject to more varia-
tions, depending upon the material being typeset. Variations in the leading
have an obvious impact on pagination, and it is important to decide how
much variation is allowable in what places before asking a machine to decide
how to break the material into pages. This decision is largely a matter of
taste. Some people have devoted much time to developing their taste in such
matters, and we ought to pay attention to the conclusions they have reached,
even if we do not always choose to follow their advice. Bruce Rogers, a book
designer, has this to say [6]:

Uneven leading or extra leading between paragraphs may
sometimes be necessary in a reference or other special kind
of book, but for ordinary text it throws lines out of register,
interrupts the continuity of the text, and offends the eye. It

Introduction

might therefore be said that the leading of a book should be
uniform throughout, with no extra space between paragraphs.

In books of maxims or short extracts several leads between
the selections are desirable where considerations of length will
not permit full blank lines, and where the extracts are not
pumbered or titled or dated. In setting such matter it is also
advisable to set the first lines without indention. This will
serve still further to indicate the fragmentary character of
the text, and to distinguish the beginning of each excerpt
from any paragraphs that may occur within it, which should
of course be given the usual indention.

It is sometimes unavoidable to make facing pages either
long or short to take care of ‘widow’ lines; but every effort
should be made to avoid them if the make-up can be rear-
ranged without too much overrunning in order to gain or
lose lines. It seems a little too finicky to demand consistent
uniformity in length of page throughout a book, especially
when some pages may run short for textual reasons. There
is entirely too much stress nowadays put on uniformity in
composition. A few obvious variations frcquently help the
appearance.

Sometimes even the leading between normal lines of text needs to be
altered slightly; Rogers describes a problem that arose in the design of his
version of Homer’s Odyssey, in which Book XXII began with two figures that
had to be printed on facing pages:

Unfortunately the preceding Book ended with only a few
lines on the left-hand page, leaving the opposite a full blank.
So with the addition of thin cards we reduced the lines per
page from thirty-one to thirty throughout Book XXI, thereby
gaining enough lines to fill the short page and carry over six
lines to the blank preceding Book XXII. I have never heard
of anyone’s noticing this discrepancy in Book XXI. It was
only one of the tricks of the trade, resorted to by many early
printers.

One last bit of advice from Rogers:

Don’t try to ‘design’ every page of type throughout a book,
or work it over too carefully after the style is chosen; leave
something to accident, so long as it is not a glaring defect.

8 Optimal Pagination Techniques

tue papnEss 10 program a computer to produce ‘readable’ books, we must formally define
FUNCTION what ‘readable’ means. One approach is to define a mathematical function,
called the badness function, that depends on the way the text is broken into
pages. This function ideally has thé property that the less readable the book
is, the greater the value of the function will be. Of course, such a function
cannot hope to capture all the nuances of readability; it will ignore such
things as the sentence structure, the design of the typefaces, the different
reading habits of the various readers, and so forth. Such things fall outside
of the scope of the pagination algorithm; they are the responsibility of the
author, the typographer, the editor, and the book designer. The badness
function may depend on the distribution of white space, the placement of
illustrations relative to their citations in the text, and whether the page
breaks come in logically desirable places.

Once a badness function has been defined, we need an algorithm that will
try to minimize its value.” While it is certainly valid to use an algorithm
that may not always find the exact minimum, or one that might take a very
long time in rare cases, we shall concentrate our attention on algorithms that
are guaranteed to find the exact minimum in a reasonable amount of time.
For any given badness function, it may or may not be possible to find such
an algorithm. Indeed, chapter two demonstrates some badness functions for
which there is good reason to believe that no good minimization algorithm
exists. Fortunately, as shown in chapters three and four, there are also
badness functions that model the intuitive notion of badness fairly well, and
that also have a reasonably fast minimization algorithm.

SOURCES OF To take full advantage of the badness function approach, there must be

IN THE TEXT SOINE flexibility in the text. Suppose, for example, that a book design called
for each line to take exactly one unit, and each figure to take an integral -
number of units, where there is a fixed number of units per page, and where
each figure is required to appear on the same page as its citation. Then
there would either be a unique way to break the text into pages, which could
be found by a simple algorithm, or there would be no way at all to do it
according to this design. But in general, the pagination algorithm is allowed
a little more leeway in its treatment of the; text.

The example at the beginning of this:chapter demonstrates two ways of
exploiting flexibility in the typographic conventions to improve the pagina-
tion. One is the movement of the figures in relation to where they are cited

Introduction

in the text. The other is manipulation of white space, in a way analogous to
the way the size of interword spaces are increased or decreased to justify a
line. Within a paragraph, there is little of this kind of flexibility, since the
eye can notice very small changes in the spacing between lines. However,
the space between paragraphs may often be expanded by a small fraction of
the baseline spacing without offending the critical eye. The largest amount
of white-space flexibility will come from the white space around displays,
figures, and at chapter and section heads.
These are some things a pagination algorithm might vary:

a) Placement of the figures in relation to the text

b) White space around displays

¢) White space between paragraphs

d) Size of the figures

e) White space between lines

f) Depth of the pages

g) Horizontal spacing in paragraphs, to alter the number of lines

h) Width of the pages

i) Size of the type

j) Order of the figures.
These possibilities are listed roughly in the order of decreasing usefulness to
an automated approach. The approach we will consider allows (a) thru (f).
The possibility of allowing the pagination routine to influence the way lines
are broken, as in (g), is discussed in chapter four. The width of the pages
and size of the type are parameters of the book design, and probably should
not be altered at the whim of the pagination routine. Similarly, the order of
the figures should conform to the plan of the author—composing them out
of order would only lead to confusion on the part of the reader.

The composition of a page is inherently a two-dimensional problem. Illus-
trations might occupy only a fraction of the full measure, allowing two or
more of them to occupy the same vertical height. Or the text may be run
around the figure; if this is done before pagination is performed, the place
that the figure occupies cannot be broken across a page boundary. But if the
figure could be moved up or down a few lines, the pagination could probably
be improved. The use of multiple columns introduces further complications,
especially if partial columns at the end of each section must be made to
balance. Some further problems of page make-up, and the implications for

SCOPE OF
RESULTS

10

THE MODEL:
80XES, GLUE,
PENALTIES,
AND INSERTS

Optimal Pagination Techniques

automatic typesetting systems, are described in a brief article by Paul Justus,
“There is more to typesetting than setting type’ [7]. It is a challenge to write a
system that can cope with the combination of these make-up conventions well
enough to produce a reasonably well-formatted document. It is even harder
to design an optimizing make-up procedure, even assuming the existence of
a badness function that can take into account the many trade-offs involved.
As we are interested here primarily in exact minimization procedures, we
will restrict ourselves to a one-dimensional model. Furthermore, we will not
concern ourselves with how the typographical components are arranged on
the page, but merely with what goes on each page.

The model we shall use was developed by D. E. Knuth for the TEX typesetting
system [8]. In this model, the components of the page are pictured as being
enclosed in bozes. Boxes are rectangles with sides that are parallel to the
edges of the paper. At the lowest level, each character is a box whose height
and width correspond to the height and width of the character. The height
of a character is measured from the baseline, which is the lowest point of the
letter ‘A’. Just as some letters (‘p’, for example) extend below the baseline,
so may boxes. The amount of this extension is called the depth of the box.
A row of boxes, called a horizontal list in TEX terminology, may be stuck
together and enclosed in a box to form a line. To keep the words from
all running together, they are separated by glue. Glue has properties that
resemble a glob of silicone sealant, or a small metal spring. Like a box, a
piece of glue has a normal width. It also has two other parameters, the stretch
and the shrink. These tell TEX by how much the glue can be expanded or
compressed. For example, the space between words normally has a width of
6 units, a stretch component of 3 units, and a shrink component of 2 units,
where the size of a unit depends on the current font. When a horizontal list
is boxed to a certain size, for example to make it fit the measure of the page,
all the pieces of glue in the list are expanded or compressed in proportion to
their stretch or shrink so that the resulting box will be exactly the desired
size. Once this is done, the glue is ‘set’ and does not change its size any more,
the enclosing box being treated as a unit. The height of the box around a
horizontal list is calculated as the maximum of the heights of the component
boxes, and similarly for the depth.

Just as boxes can be combined in a horizontal list, they may be combined
in a vertical list. The glue between items in a vertical list works in the same

Introduction

way as horizontal glue, but it usually arises in a different way. Whereas the
horizontal glue nsually comes from a space between words, the vertical glue
is normally calculated so that the distance between baselines is a fixed value
specified by the user, unless this is impossible due to an unusually high or
deep box. The user may also specify either kind of glue explicitly.

It is possible for the user to specify exactly what goes into each box. More
commonly, TEX will take a long list of boxes and break it up into several
lists, each of which is boxed separately. If the original list was a horizontal
list, these new boxes form lines, and get joined together in a vertical list. If
the original list was a vertical list, then each new box forms a page, which
gets sent to the output file after the addition of such things as page numbers
and running heads.

To break a horizontal list into lines, TEX uses a dynamic programmmg
algorithm to decide on the ‘best’ way to do the breaking. This algorithm,
analogous to those for page breaking that will be developed in chapters three
and four, finds a way to break the paragraph into lines so that a certain
badness function is minimized. Omne component of the badness function
measures the amount that the glue has to be stretched or compressed in
order to make a line fit. If the normal spacing of the line is short of the
measure by the amount z, and if y is the total amount of stretchability in
the line, then the adjustment ratio r is z/y; if the normal spacing of the line
is wider than the measure by the amount z and the total shrinkability in the
line is z, then r is —z/z.

TEX is not allowed to break a list just anywhere; most commonly a break
is made between a box and some glue that immediately follows it. The only
other place that a break may occur is at a penalty node. A penalty node’s
purpose is to control the breaking of the list. It has an associated penalty
value, which is added to the total badness if a break is made at the penalty
node. This value may be positive, to dlscourawe a break, or negative, to
encourage one. By convention, any value 1000 or greater is treated as infinity,
so ‘penalty 1000’ means ‘never break here,’” and ‘penalty ~1000’ means ‘always
break here.” When a break is chosen, all of the glue and penalties that follow
it and precede the mext box in the list are discarded before the new boxes
are made.

TEX calculates the badness function of a paragraph by figuring out how
many demerits to charge for each line, and then adding together all the
demerits. The demerits for a line having adjustment ratio r and ending with

11

BREAKING
PARAGRAPHS
INTO LINES

12

ADVANCED
USES OF
PENALTIES
AND GLUE

RAGGED LEFT
MARGINS

Optimal Pagination Techniques

a penalty node with the value P is calculated according to the formula
(1 + 100r|* + P)?,

provided that r > —1 and P > 0. If r < —1, the badness is taken to be
infinite, since TEX does not allow glue to be compressed by more than its
shrinkability. If P < 0, the demerits are calculated as

(1 4+ 1007|*)* — P?,

in order to keep the function monotone when the penalty is negative. Addi-
tional demerits are charged when both this line and the one before it end
in a hyphen. This particular definition is quite arbitrary, but it works out
quite well in practice, as you can see by looking at this page.

When the boxes-and-glue model was first proposed, it was apparent'tha.t it
would allow many of the common typesetting operations to be done without
introducing new primitives for each. Justification is an obvious example,
accomplished by .using glue with positive stretchability, shrinkability, and
width for each blank, and by suppressing the glue at the ends of the lines.
The glue after punctuation marks may have more stretch and less shrink
than a normal space. By putting glue with a very large stretchability at
the right end, at the left end, or at both ends of a line, the line can be left
justified, right justified, or centered. On a title page, it is often desirable to
‘center’ some text on the page, but what is wanted is not the exact center,
but the visual center, which is a bit higher on the page. This is easily done
by putting some glue with large stretchability above the text, and some glue
with an even larger stretchability after the text.

After TEX had been implemented and in use for a while, it was discovered
that by using boxes and glue in conjunction with penalty nodes and the
optimizing line breaking algorithm, it was possible to do other interesting
things without introducing new primitives. For instance, to set a paragraph
with a ragged left margin and a straight i'ight margin, the user may specify

penalty 0

glue 4pt plus —,1000pt
boz width Opt
penalty 1000

glue Opt plus 1000pt

Introduction

for each space in the text. The only place a break may occur is at the
penalty 0 node; if no break occurs here, the negative stretch in the first glue
cancels out the stretch in the second glue, and the net effect is 4 points of
fixed-width glue. If a break does occur, the first glue is discarded, and the
empty box causes the second glue to be retained, so this glue appears at the
front of the next line. To get the boundary conditions right, the paragraph
should begin with ‘glue Opt plus 1000pt’ and it should have no extra glue at
the end. (TEX normally adds glue with 100000 points of stretch at the end
of each paragraph to set the last line flush left.)

By means of analogous sequences, it is possible to get the line breaking
algorithm to set a paragraph with a ragged right margin, or even to center
each line of the paragraph. These and other similar sequences may be
discovered with an algebra of boxes and glue that was developed by D. E.
Knuth [9]. Of course, similar techniques may be used in vertical mode to
allow, for instance, the amount of white space at the bottom of the page to
vary in order to give the pagination routine some extra flexibility.

In vertical mode, the box-and-glue model is not quite sufficient to do
automatically everything that is needed for practical typesetting. There
must be a way of specifying figures and tables that are allowed to ‘float’
with respect to the text; their position in the final document is not specified
exactly by the author, but determined by constraints such as ‘this figure
should appear at the top of a page somewhere nearby’ or ‘this footnote must
appear at the bottom of the present page.” In TEX, such things are specified
as inserts. An insert is a vertical list that may appear in the document at
some place other than where it is defined. Since an insert contains a vertical
list, it has a normal height, stretch, and shrink, just like glue. When the
insert is specified, the user tells whether it is to appear at the top or bottom
of the page (i.e., whether it is a topinsert or botinsert), and whether it must
appear on the same page as the definition (bound), or may appear on a
different page, if necessary (floating). The floating topinsert is most useful
for inserting figures or tables, since these most often come at the top of a
page. The bound botinsert is useful for short footnotes that never have to be
broken across a page. It is possible to think of other varieties of inserts that
would be handy, such as ‘put this a.lgorithni§ definition right here if it will fit;
otherwise put it at the top of a facing page,’ or ‘if this is the first figure on
the present page, put it at the top; otherwise put it at the bottom.” Since
such variations deal with how things are arranged on the page rather than

13

INSERTS

