
98 TUGboat, Volume 41 (2020), No. 1

About The Art of Computer Programming,
Volume 4, Fascicle 5

David Walden

Donald E. Knuth, The Art of Computer
Programming, Volume 4, Fascicle 5.
Addison-Wesley, 2019, 382 pp., softcover, US$34.99,
ISBN 978-0-13-467179-6. tug.org/l/f5-aw

Fascicle 5 for Volume 4B of The Art of Computer
Programming (TAOCP) was published shortly before
Christmas 2019. It received some news coverage.1,2,3

I cannot presume to review Knuth’s new fascicle
in the sense of judging the mathematical or algorithm
value of its contents. Also, there is no point in
judging the presentation — Knuth always works to
his own standard of what’s “useful and beautiful”.
(Speaking about writing TAOCP with TEX, Knuth
says that what he does first has to appeal to him
and, if he didn’t like something, he would change
it.4) Instead, I will report a bit about the fascicle.

1 Topics in Fascicle 5

As shown on the cover image of Fascicle 5, its ma-
jor sections are Mathematical Preliminaries Redux,
(Introduction to) Backtracking, and Dancing Links.

Mathematical Preliminaries Redux. The fas-
cicle begins with an unnumbered section that adds

7.1 Zeros and ones

7.1.1 Boolean basics

7.1.2 Boolean evaluations

7.1.3 Bitwise tricks and techniques

7.1.4 Binary decision diagrams

7.2 Generating all possibilities

7.2.1 Generating basic combinatorial patterns

7.2.1.1 Generating all n-tuples

7.2.1.2 Generating all permutations

7.2.1.3 Generating all combinations

7.2.1.4 Generating all partitions

7.2.1.5 Generating all set partitions

7.2.1.6 Generating all trees

7.2.1.7 History and further references

[Fascicle 5 below; volume 4A above]
7.2.2 Backtrack programming

[14 unnumbered but named subsections]
7.2.2.1 Dancing links

[20 unnumbered but named subsections]
[Fascicle 5 above; Fascicle 6 below]

7.2.2.2 Satisfiability

[17 unnumbered but named subsections]

Figure 1: Contents of Volume 4A, Fascicle 5,
and Fascicle 6.6,7

more probability theory techniques to what was de-
scribed in section 1.2, Mathematical Preliminaries,
of Volume 1 of TAOCP. Knuth says that he has
“run across” various such techniques in his years of
preparing Volume 4 and would have included them
in section 1.2 if he “had been clairvoyant enough
to anticipate them in the 1960s.” These additional
mathematical preliminaries are presented with 11.5
pages of explanation and 15.5 pages of exercises.

Backtracking. This second topic in Fascicle 5 is
the first 16 subsubsections of section 7.2.2 of Vol-
ume 4 as shown in Figure 1.5

The section has 26 pages of explanation about
backtrack programming followed by 79 exercises.
The explanation introduces and compares several
(some historical) algorithms for backtracking, ways
to improve on the algorithms, and ways to better
program the algorithms (e.g., data structure tricks).

Dancing Links. This third topic is subsection
7.2.2.1 of Volume 4. Knuth’s discussion of dancing
links takes about 50 pages of explanation followed by
three sets of exercises (450 exercises total). The ex-
planation starts by noting that in backtrack program-
ming there is a lot of doing and undoing, and doubly
linked lists are helpful for this. But, when elements
are dropped out of a list, there is often a better ap-
proach than leaving a deleted list item for a garbage
collector and creating a new list item when one is
added to the list. A better approach at various points
in backtracking is to leave a deleted list item where
it is in memory and to later reconnect it to the list as
if it had never been deleted. This is “dancing links”.

David Walden

TUGboat, Volume 41 (2020), No. 1 99

Descriptive style. In both the backtracking and
dancing links portions of the fascicle, the algorithms
and some implementation examples are presented
as sort of a verbal flow chart, perhaps including
some instructions from Knuth’s MMIX computer and
assembly language, for example:

B1. [Initialize.] Set l ← 1, and initialize the data
structures needed later.

B2. [Enter level l] (Now Pl−1(x1, . . . , xl−1) holds.) If
l > n, visit x1x2 . . . xn and goto B5. Otherwise set l←
min Dl, the smallest element of Dl.

This method of sketching algorithms has been
used at least since the third edition of Volume 1; how-
ever, there seem to be fewer instances of sequences
of assembly language instructions than I remember
being in Volumes 1, 2, and 3.8,9 As a one-time com-
puter programmer, I wish that Volume 4A and the
Volume 4B fascicles used something a little closer to
a programming language for showing algorithms.

There is still plenty of discussion in the fasci-
cle of low-level ways to implement algorithms effi-
ciently. Here is some example text from the bottom
of page 65: “Interesting details arise when we flesh
out the algorithm and look at appropriate low-level
mechanisms. There’s a doubly linked ‘horizontal’
list of all the active options that involve it.” The
discussion continues on the next two pages including
two 22x16 diagrams of the list in memory.

Throughout TAOCP Knuth refers to prior vol-
umes by section number without a volume number.5

The presentation style also presumes the reader has
read the prior volumes. For example, the definition
of “visit” in step B2 above of Algorithm B is given in
Volume 1 (page 320); it means “do whatever activity
is intended as the tree is being traversed”.

Exact cover. Early on in the discussion of danc-
ing links Knuth also introduces exact covering. He
gives a simple example of exact covering on page 64.
Suppose there are the subsets {c e}, {a d g}, {b c f},
{a d f}, {b g}, and {d e g} of the set S of letters
{a b c d e f g}. The first, fourth, and fifth subsets
provide an exact cover for S, in that taken together
the three subsets contain all the items in S once and
only once. This is perhaps clearer if set up as finding
an exact cover within a 7x6 matrix of zeros and ones
(see Figure 2).

With the exact cover concept introduced and
possibilities for efficient implementation discussed,
Knuth then gives Algorithm X (for exact cover via
dancing links), the suggestion that the reader do
an exercise, and then 30 more pages of variations,
applications, and optimizations.10

a b c d e f g
row 1 0 0 1 0 1 0 0 {c e}
row 2 1 0 0 1 0 0 1 {a d g}
row 3 0 1 1 0 0 1 0 {b c f}
row 4 1 0 0 1 0 1 0 {a d f}
row 5 0 1 0 0 0 0 1 {b g}
row 6 0 0 0 1 1 0 1 {d e g}

Figure 2: A combination of Knuth’s formulas 5 and 6
on page 64 of Fascicle 5; rows 1, 4, and 5 form an exact
cover of the set {a, . . . , g}.

Puzzles. Many puzzles are about exact covers, such
as the eight queens puzzle where the goal is to place
eight queens on a chess board such that no two queens
are in the same column, row, or diagonal. Backtrack
programming, perhaps with the help of dancing links,
can often be used for finding an exact cover.

(While describing backtracking, Knuth had al-
ready noted that one of the best ways to understand
backtracking is to execute the basic backtracking
algorithm, Algorithm B, by hand for the four queens
puzzle — placing four queens on a 4 by 4 chessboard
so no queen attacks any other queen. I spent a
bunch of time doing this, and it helped me under-
stand both backtracking and the potential subtleties
of implementing it in code.)

As the dancing links discussion continues, Knuth
develops various algorithms and presents some theo-
rems, often using puzzles as illustrations, e.g., sudoku,
polyominoes, and kenken. Knuth chats about this in
the fascicle’s preface. He sees puzzles as often being
the best way to illustrate an algorithm. The odds
are good, he says, that a page selected at random
in the fascicle will mention a puzzle. He makes the
point that the methods that he is describing are use-
ful for creating puzzles as well as solving them. He
also discusses the history of the puzzles and sees the
fascicle as a contribution to the world of recreational
mathematics as well as teaching computer methods.

Knuth has said that Volume 4 covers the kind
of algorithms he enjoys most.11 A quote from the
Fascicle 5 preface: “I have had loads of fun writing
the other fascicles, but without a doubt this one has
been the funnest.”

I do wish, in addition to all the puzzle examples,
that the fascicle spent more time on real world ap-
plications. On the Internet,12 I found the following
statement, which helped me somewhat:

By far the most relevant, large size, important ap-
plication of set covering is in personnel shift plan-
ning (mainly in large airline companies). There,
elements to be covered are the single shifts (or
single flights), and sets are legal combinations of

About The Art of Computer Programming, Volume 4, Fascicle 5

100 TUGboat, Volume 41 (2020), No. 1

work/no work schedules. These easily go to mil-
lions or even billions of variables, as the number
of combinations is huge.

I guess I comprehend that the general topic of
Volume 4, combinatorics, is relevant to a wide variety
of real life problems.

Knuth lectures. If you haven’t yet bought the
book and want to know more about dancing links,
Knuth’s 2018 Christmas lecture is on the topic,13

and there is a previous (2000) Knuth lecture also on
dancing links.14 Notice that these two lectures on the
same topic are years apart; Knuth states in Volume
4A that he has been saving up various methods and
examples for years to eventually select among them
for Volume 4 of TAOCP. (He also emphasizes that
there is much he doesn’t cover; he has to “cut, cut
cut”, keeping only what he believes will remain of
fundamental importance for decades.)

Knuth’s 2019 Christmas lecture15 is nominally
about π; among other things, he gives a bunch of
examples of π being used in his books as a source
of random data. In the lecture Knuth also talks
about Fascicle 5, gives examples (especially puzzle
examples) from the fascicle, and promotes it (“it
will be a good Christmas present”). Talk about
Volume 4B starts at about minute 27 of the lecture’s
video, first with a bit about Fascicle 6 and then about
Fascicle 5. Giving example after example of sudoku,
Knuth says that he has studied sudoku so deeply, it
is no wonder it took him a long time to write the
book. He has said that this book is “tons of fun and
teaches a few algorithms on the side”.16

There is also a Knuth video on the subject of
Fascicle 6, satisfiability and SAT solvers.17 Figure 1
shows where Fascicle 6 fits within the topics of Vol-
ume 4 of TAOCP. Volume 4A discusses manipulation
of 0s and 1s and methods of generating basic combi-
natorial patterns; Fascicle 5 discusses backtracking
and how to do it more efficiently with dancing links;
and then Fascicle 6 on satisfiability shows the use of
those techniques to develop SAT solvers which can
be applied to many, typically massive, real world
problems. Knuth touches on some of the latter in
the video. In the Preface to Fascicle 6, Knuth says,
“The story of satisfiability is a tale of the triumph
of software engineering blended with rich doses of
beautiful mathematics.” For any readers who have
been wondering if Knuth’s emphasis on efficient algo-
rithms is still relevant with today’s computers which
are so much more powerful than in 1962 when Knuth
started TAOCP, Fascicle 6 justifies the continuing
thrust for maximum efficiency. Knuth reports that
“modern SAT solvers are able to deal routinely with
practical problems” involving “many thousands of

variables” that were “regarded as hopeless just a few
years ago”. In Fascicle 6 he is describing a rapidly de-
veloping field — especially over the past few decades.
Knuth has been actively learning and contributing to
the field in various ways, but he says that he knows
he must move on. Fascicle 6 is a 2016 snapshot of
the field, leaning toward the implementation rather
than theoretical side of things; and Knuth hopes that
it contains a “significant fraction of concepts that
will prove to be the most important as time passes”.

2 Main text, exercises, and answers

Fascicle 5 is definitely an unusual book (although
not so much for Knuth) in terms of the ratio of
main text to exercises and answers. Fascicle 5 has
100 pages of main text, 88.5 pages of exercises (663
exercises total), and 176 pages of answers. Knuth
says that he wrote 600 programs while writing this
fascicle because he needs to program things to really
understand them. A small set of the most important
programs are available, written in CWEB, to help
readers solve problems.

Digressing for a moment to Fascicle 6 (section
7.2.2.2, on satisfiability — see Figure 1), it has 132.5
pages of main text, 50.5 pages of exercises (526 ex-
ercises total), 106 pages of answers, and 310 pages
altogether in the book. This gives us, so far in
Volume 4B, 232.5 pages of main text, 139 pages of
exercises (1,189 exercises), and 282 pages of answers.

In his Notes on the Exercises near the beginning
of TAOCP Volume 4A, Knuth explains about the
benefits of exercises, noting that the exercises allow
(are designed for) “self-study as well as for classroom
use.” He continues, saying

It is difficult, if not impossible, for anyone to learn
a subject purely by reading about it, without
applying the information to specific problems and
thereby being encouraged to think about what
has been read. Furthermore, we all learn best
the things that we have discovered for ourselves.
Therefore the exercises form a major part of this
work; a definite attempt has been made to keep
them as informative as possible and to select
problems that are enjoyable as well as instructive.

Knuth has had this view a long time. I remem-
ber that in Knuth’s interview in the book Mathe-
matical People,18 he said that when first in college
he had doubts about his abilities. Therefore, he
worked all the exercises in the textbook, not just the
assigned exercises, and then found he really under-
stood things. Also there was his problem solving
course at Stanford: people we know who took this
course said it was wonderful — the teacher and stu-
dents jointly solved new problems with the teacher

David Walden

TUGboat, Volume 41 (2020), No. 1 101

using his experience to guide the students in useful
directions.19

3 What TAOCP is and isn’t

I previously spoke to what TAOCP is and isn’t: see
my 2011 “appreciation” of Volume 4A in TUGboat.20

I will repeat a couple of points here because there
has been a lot of overstatement about TAOCP in
the popular press which is all many lay people know
about the TAOCP: (1) TAOCP is not a book for
teaching computer programming to the typical per-
son learning to program. It does teach (explicitly)
analysis of algorithms and (less explicitly) problem
solving in the sense of finding algorithms to solve
problems. (2) TAOCP is not a definitive treatment of
computer science (although it may have been closer
to comprehensive at the project’s start in 1962); it
doesn’t cover lots of computer science, for exam-
ple, artificial intelligence, computer networks, and
parallel processing. What it does cover, though, it
covers unusually deeply; it also contains a significant
amount of history of mathematical and computing
algorithms. Don’t misunderstand me — TAOCP was
and remains a monumental achievement and superb
contribution to computer science and mathematics,
regardless of its present state with only two-thirds
of Volume 4B published.

TUGboat’s reviews editor has asked me about
the ideal reader for TAOCP. I think this has changed
from volume to volume and over time. When Vol-
umes 1, 2, and 3 came out in relatively rapid succes-
sion from 1968 to 1973, the volumes and their con-
tents (all organized in distinct volumes) were more
or less unprecedented. A practicing computer pro-
grammer could turn to the volumes to find the best
approach or implementation for a not-unusual prob-
lem, e.g., random number generation, hash coding, or
sorting. Later, undoubtedly partially stimulated by
Knuth’s work, many other books and papers on these
topics were published, and a programmer needing a
method might turn to one of these instead of TAOCP.

By the time Knuth got to his planned (not too
long) chapter on combinatorial algorithms, the field
was expanding rapidly (he “was confronted with . . .
a prodigious explosion of new ideas!”). Now, extrap-
olating from the length of fascicles 5 and 6, we can
expect a total count in Volumes 4A and 4B of over
1,000 pages, and Knuth’s outline continues on to Vol-
umes 4C and 4D. The reader of the primary topics
of Volume 4 is probably now a math or algorithms
specialist (or someone studying to be one), or some-
one studying a particular type of puzzle who can
find his or her way through the math, or someone
developing a solution to a big real world problem.

General computing practitioners may be more likely
to skip to the bits of history Knuth includes; these
remain fascinating.

Also, these days practitioners needing techniques
covered in Volume 4 may well be able to find needed
algorithms on the Web, perhaps even coded in the
programming language the programmer is using for
his or her larger project, perhaps even provided by
an explicit library on the topic (in some cases the
code found will be an implementation of an algorithm
from Volume 4). On the other hand, having spent
as many hours with Fascicle 5 as I have writing this
description of the book, I am tempted to spend more
time with the book in order to really understand the
backtrack and exact cover algorithms, even lacking
a problem to solve that needs the methods.

4 In conclusion . . .

Fascicle 5 (and Fascicle 6) is another spectacularly
impressive production by Knuth. It is incredible
that one man can collect the topics and prior pub-
lications, understand both the problems and the
solutions, sometimes extend them, write hundreds
of programs and develop hundreds of exercises and
answers, typeset the book himself, and do all this
carefully enough that he can offer rewards for mis-
takes that are found. And, while doing all this, he
also finds time for giving the occasional lecture, writ-
ing a major work for organ21, and who knows what
other projects he has underway. I eagerly await the
next publication from Donald Knuth.

Notes

1 slashdot.org/story/364386
2 tug.org/l/f5-xmas-pi
3 Readers of this journal likely will know, at least roughly,

the story of Don Knuth’s decades long work on his
magnum opus, The Art of Computer Programming: he
started it in 1962, published three volumes in 1968, 1969,
and 1973, suspended work in 1977 to develop TEX, and
returned to work on Volume 4 in 2001. For anyone who
wants a more detailed history, there are descriptions on
the Web about the original intention for the book(s), how
the project was originally received, and how the project
has evolved, for example: tug.org/l/taocp-amsreview,
tug.org/l/taocp-wiki, tug.org/l/taocp-softpano.

Knuth has noted that one of the reasons things have
taken so long is that he keeps discovering new content
that needs to be included.
4 youtube.com/watch?v=2BdBfsXbST8, minutes 1:36:00

to 1:38:00.
5 Section 2.2.2 begins, “Now that we know how to gen-

erate simple combinatorial patterns . . . we’re ready to
tackle more exotic patterns . . . ” Presumably we got this
know-how from reading the 223 pages of narrative and

About The Art of Computer Programming, Volume 4, Fascicle 5

102 TUGboat, Volume 41 (2020), No. 1

exercises and 149 pages of answers in section 7.2.1 in
Volume 4A.
6 In this and the other books of TAOCP, some of the

numbered and unnumbered section titles are prefixed
with an asterisk. These are sections that Knuth says
can be skipped upon first reading and come back to
later. Udo Wermuth pointed me to this explanation in
Volume 1. Udo, who is well known to readers of TUGboat,
is one of the few people Knuth acknowledges by name in
Volume 4A and Fascicles 5 and 6.
7 Donald E. Knuth, The Art of Computer Programming,

Volume 4, Fascicle 6. Addison-Wesley, 2016, 310 pp.,
softcover, US$29.99, ISBN 978-0-13-439760.
tug.org/l/f5-aw
8 In the days of MIX, before Knuth developed his MMIX

RISC computer architecture:
www-cs-faculty.stanford.edu/~knuth/mmixware.html
9 Martin Ruckert has written a book which reimple-

ments the MIX code examples in Volumes 1, 2, and 3
as MMIX code examples: Martin Ruckert, The MMIX

Supplement: Supplement to The Art of Computer Pro-
gramming Volumes 1, 2, 3 by Donald E. Knuth, Addison-
Wesley, 2015.

Ruckert has also published several papers in TUGboat,
including some that stem from his work developing the
MMIX supplement, e.g., Computer Modern Roman fonts
for ebooks, TUGboat 37:3 (2016), pp. 277–280,
tug.org/TUGboat/tb37-3/tb117ruckert.pdf.
10 A worked example of Algorithm X is in Wikipedia:
en.wikipedia.org/wiki/Knuth%27s_Algorithm_X
11 At youtube.com/watch?v=2BdBfsXbST8, about min-
ute 32:10; keep watching for a few more minutes to hear
Knuth describe the original purpose of TAOCP. See
lexfridman.com/donald-knuth/ for a table of contents
for the video. There is a lot of interesting stuff in this
interview.
12 tug.org/l/f5-cover-use
13 tug.org/l/knuth-xmas18
14 tug.org/l/knuth-xmas00
15 tug.org/l/knuth-xmas19
16 A list of Knuth lectures, including Christmas lectures,
is at: tug.org/l/f5-xmas-list.
17 youtube.com/watch?v=g4lhrVPDUG0
18 Donald J. Albers and Gerald L. Alexanderson, Math-
ematical People: Profiles and Interviews, Mathematical
Association of America, Birkhäuser, 1985.
19 For example, see:
www-cs-faculty.stanford.edu/~knuth/papers/cs1055.pdf

i.stanford.edu/pub/cstr/reports/cs/tr/89/1269/

i.stanford.edu/pub/cstr/reports/cs/tr/87/1154/
20 David Walden, An appreciation: The Art of Com-
puter Programming, Volume 4A, TUGboat 32:2 (2011),
pp. 230–232.
tug.org/TUGboat/tb32-2/tb101reviews-knuth.pdf
21 youtube.com/watch?v=e_1a6bHGQGo

� David Walden
walden-family.com/texland

David Walden

