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Understanding scientific documents
with synthetic analysis on mathematical
expressions and natural language∗

Takuto Asakura

1 Introduction

Converting Science, Technology, Engineering, and
Mathematics (STEM) documents to formal expres-
sions has a large impact on academic and industrial
society. It enables us to construct databases of math-
ematical knowledge, search for formulae, and develop
a system that generates executable code.

However, such conversion is an exceedingly ambi-
tious goal. Mathematical expressions are commonly
used in scientific communication in numerous fields
such as mathematics and physics, and in many cases,
they express key ideas in STEM documents. De-
spite the importance of mathematical expressions,
formulae and texts are complementary to each other,
and neither can be understood independently. Thus,
deep synthetic analyses on natural language and
mathematical expressions are necessary.

To date, much effort has been made for develop-
ing Natural Language Processing (NLP) techniques,
including semantic parsing (SP) [4], but their targets
are mostly ‘general’ texts. Naturally, conventional
NLP techniques include only limited features to treat
formulae and numerous linguistic phenomena specific
to STEM documents [3].

Meanwhile, semantics on mathematical expres-
sions also has been deeply investigated. Such results
can be seen in logic theories, the MathML specifi-
cation [1], etc. However, there is a large distance
between formal expressions such as first-order logic
and actual formulae in natural language texts.

2 Research goals

There is substantial work remaining to achieve con-
version from STEM documents to a computational
form (Figure 1). At first, we are going to focus on
the two foundational parts for the synthetic analyses.
The first is token-level analyses on formulae. The
main part of the analyses is associating formulae
tokens to mathematical objects and text fragments
(Section 2.1). This is a fundamental step for the
conversion, but it is still almost untouched. The
second step is the morphology of mathematical ex-
pression and semantics covering both formulae and
texts (Section 2.2). Studying underlying theories is
essential to deeply understand the structure of STEM

documents. We aim for practical applications via a
bottom-up approach.

∗ A version of this extended abstract was published at the
Doctoral Programme of CICM 2019.
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Figure 1: Overview of our task definitions.
At first, we are tackling the token-level analyses on
mathematical expressions (Section 2.1) and theories
covering both formulae and texts (Section 2.2).

2.1 Associating tokens in formulae with
mathematical objects and their
descriptions in texts

Tokens in formulae (e.g., x, ε, ×, log) and their
combinations can refer to mathematical objects. We
human beings are able to detect what each token
or combination pointing to, by using common sense,
domain knowledge, and referencing descriptions in
the document or in the others. This detection is
fundamental and should be one of the initial steps for
understanding STEM documents, but unfortunately,
it cannot be easily done by a machine. There are at
least four factors which make the detection highly
challenging: (1) ambiguity of tokens, (2) syntactic
ambiguity of formulae, (3) need for “common” sense
and domain knowledge, and (4) severe abbreviation.
These difficulties often appear in formulae; giving
an example for (1) as a representative, already in
the first chapter of a book Pattern Recognition and
Machine Learning (PRML) [2], a character y (letter
‘y’ in bold roman) is used with several meanings
including a function, vectors, and a value (Table 1).

The other part of the initial steps of understand-
ing STEM documents is connecting text fragments
to the subjective mathematical objects. Our hypoth-
esis is that for this step, general NLP approaches
such as dependency parsing are more or less appli-
cable. Of course, some tuning for STEM documents
will be required. Also, this process might need to
be done by considering the result of mathematical
object detection for formulae.

2.2 Semantics and morphology

Semantics on natural language and mathematical
expressions have been studied separately. However,
to understand STEM documents, it is important to
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Table 1: Usage of character y in the first chapter of PRML (except exercises). Underlines by the author.

Text fragment from PRML Chap. 1 Meaning of y

. . . can be expressed as a function y(x) which takes . . . a function which takes an image as input

. . . an output vector y, encoded in . . . an output vector of function y(x)

. . . two vectors of random variables x and y . . . a vector of random variables

Suppose we have a joint distribution p(x,y) from . . . a part of pairs of values, corresponding to x

investigate a synthetic semantics covering both of
texts and formulae.

Though morphology has been studied for natural
languages, this is not so much the case for formulae.
As a matter of fact, in terms of morphology, words
also exist in formulae. For instance, a token M is a
word in “Matrix M”, but M is not a word in “An en-
try Mi,j” (Mi,j is a word). Unlike morphemes in nat-
ural language, tokens in formulae do not have lexical
categories, but some symbols (e.g., parentheses and
equal sign) and positional information (e.g., super/
subscript) have typical usages.

3 Completed and remaining research

For the beginning of our research, we simplified the
detection task which we described in Section 2.1.
Specifically, we are making annotations on some
research papers in the following manner:

1. Detecting minimal groups of tokens (we call
them chunks), each referring to a mathematical
object (chunking).

2. Categorizing chunks by the mathematical object
they referring to.

This annotation (pilot annotation) is the fundamen-
tal process for creating the first gold dataset for
associating tokens and mathematical objects. The
annotated data will also be helpful for investigating
the morphology on mathematical expressions.

In other words, we defined a classification task
before annotating descriptions for formulae tokens.
Since there are many ways to describe a mathemati-
cal object, this classification can be done more coher-
ently through the pilot annotation. Moreover, we are
expecting that the classification is naturally rather
easier to be automated than giving descriptions au-
tomatically in the first attempt.

Besides the pilot annotation, all the jobs that
have to be done to achieve our goal remain. For the
next step, we are planning to automate the anno-
tation process by using features such as apposition
nouns and syntactic information in formulae. At the
same time, we have to decide the form of mathe-
matical objects. For now, we can say that every
mathematical object should have a description and
some attributes such as types (e.g., int and float).

What attributes are necessary and sufficient is still
not clear, and we will find out after trying the anno-
tation for several documents.

4 Publication plans and evaluation plans

Currently, we are creating a new language resource
as the pilot annotation, and we are planning to pub-
lish it for the community of language resources. For
the further future, we will develop automation algo-
rithms for mathematical object detection, which are
works suitable for NLP and the digital mathematical
library community, including CICM. The analyses
on underlying morphology and semantics are more
like works in computational linguistics.

For the initial dataset, it is better to ensure
agreement among a few experts, if possible. Subse-
quent progress on developing algorithms and analyses
on linguistic phenomena should be evaluated with
our handmade gold datasets.
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