TUGboat, Volume 35 (2014), No. 3

13build — A modern Lua test suite
for TEX programming

Frank Mittelbach, Will Robertson and
The KTEX3 team

Contents

1 Introduction 287

2 History 287
2.1 The needs in the '90s 288

2.2 The general approach 288
2.3 The new needs (in the new century) 289

3 Overview of the new system 289
3.1 Modes of testing 290
4 Setting up the regression test system 290

4.1 Creating and checking test output . 290

4.2 An example driver file 291
4.3 The structure of test files 291
4.4 Options 292
5 Operating the system 292
6 Acknowledgements 293

1 Introduction

Regression tests are an important tool in any mod-
erately complex programming environment. They
allow the programmer to make extensive changes to
their code while providing confidence that something
that used to work still does. Extensive regression test
suites have been an essential component of the main-
tenance and development of INTEX 22 and IATEXS.

A regression test suite is typically composed of
a number of individual files that contain one or more
testable units of the code being tested. A testable
unit might be either a certain computation with
an expected outcome, a series of logic tests, or—
in particular for TEX-based code—material that
is typeset and intended to achieve some particular
formatting.

During code development and before any new
code is released to the public, this test suite can
be compiled to ensure that any changes to the code
have not introduced bugs or changed the behaviour
compared to previous versions. As bugs in the code
are reported, minimal examples demonstrating the
bug often form test files of their own, showing that
the bug has been fixed and won’t re-occur.

As TEX-based code operates in at least three dif-
ferent ‘modes’ (mouth, stomach, and output), regres-
sion testing is more complex than simply asserting
the outcome of certain programming logic. As part

287

of the work of the ITEX3 project, a new Lua-based
testing environment has been written to support
ongoing development. This testing environment, pre-
sented at the 2014 TUG conference in Portland [3],
is suitable for use by the general TEX community.

2 History

The ideas for a regression test suite for INTEX date
back to the early nineties' when I¥TEX 2.09 existed
in various incompatible flavours around the world
due to its limitations in properly supporting font
selection, complex mathematics, and languages other
than English. Because of that situation KTEX 2¢ was
designed and implemented to reunite the different
format and to provide a stable platform for future
ITEX development.

However, to successfully introduce IATEX 2¢ as
an accepted successor of IMTEX 2.09 it was essential
to win over the huge IMTEX user base and provide
them with a system that was as stable and upward
compatible as possible. Thus existing user interfaces
should be preserved and typesetting should provide
identical output except in those cases where bug fixes
or deliberate design decisions resulted in changes.

To achieve this we devised a validation mech-
anism that could be used to ensure that interfaces
behave as expected and typesetting results do not
change even though the underlying code gets mod-
ified. With this in place the M TEX3 Project Team
together with additional volunteers set out to create
a large number of test files and verify them against
the current TEX2.09 implementation. Figure 1
shows the original request for volunteers (exhibiting
a severe underestimation of the amount of work in-
volved); see also [2] for a more extensive description
of this endeavor.

This effort resulted in something like 200 test
files that were then used to assure ourselves that
the new IXTEX 2¢ implementation was faithfully sup-
porting all interfaces —it was one of the key factors
that ensured the new system became an accepted
replacement for ¥TEX 2.09 within a reasonably short
period.

Once in place this regression test suite was aug-
mented over time and now contains roughly 350 test
files altogether. Whenever a bug was found and fixed
we added a new test file that would exhibit the unde-
sired behavior if that bug would somehow resurface
through later changes.

Though not perfect (after all we introduced a
number of bugs that initially were not caught by the

1 As with many ideas in the TEX world, this one too can
be partly traced back to Don Knuth, who already provided
his own regression test for TEX a decade earlier [1].

13build — A modern Lua test suite for TEX programming

288

Validating BTEX 2.09

Writing test files for regression testing;:
checking bug fixes and improvements to verify
that they don’t have undesirable side effects;
making sure that bug fixes really correct

the problem they were intended to correct;
testing interaction with various document
styles, style options, and environments.

We would like three kinds of validation files:

1. General documents.

2. Exhaustive tests of special
environments/modules such as tables,
displayed equations, theorems, floating
figures, pictures, etc.

3. Bug files containing tests of all bugs that
are supposed to be fixed (as well as those
that are not fixed, with comments about
their status).

A procedure for processing validation files
has been devised; details will be furnished
to anyone interested in this task. Estimated
time required: 2 to 3 weeks, could be
divided up.

Figure 1: Original request for volunteers

regression test suite), the approach served us very
well and prevented a number of horrible mistakes that
would otherwise have made it into public releases

of WTEX.
2.1 The needs in the ’90s

With the initial regression test suite we solved a
number of burning problems. First of all we wanted
to be confident that the code and the documented
user interfaces worked as expected. Whenever we
recoded an internal function the test suite would au-
tomatically alert us if that resulted in any noticeable
changes at the user level or in downright bugs.

Furthermore IMTEX 2¢ came with much more
documentation and the tests included compiling and
checking the documentation files for errors and miss-
ing references.

In addition the Makefiles that ran the tests also
included goals to build the distribution automati-
cally. Compared to I#TEX 2.09, which consisted of
very few files, the format for I¥TEX 2¢ was generated
from many source .dtx files, so the housekeeping
complexity was greatly increased.

Another issue we had to tackle was that the
code was no longer maintained by a single person
but by developers living in different places around
the world and using different operating systems and

TUGhboat, Volume 35 (2014), No. 3

installations. So the regression suite had to function
with different installations without creating spurious
differences.

Finally all tasks had to work without user in-
tervention or manual work because only in that case
will such a system be used on a regular basis and
thus benefits be realized.

2.2 The general approach

Designing a test system for verifying TEX’s type-
setting behavior is not easy —how do you test for
correctness and how do you ensure that the tests are
repeatable over time and in different places?

The approach we came up with was to build
test files that generate suitable data in their .log
files. Suitable data would be, for example, the state
of counters or dimensions produced with \showthe,
data written with \typeout, and box content shown
with \showbox. Some of the tracing parameters
of TEX could be used to verify paragraph build-
ing or page breaking decisions, but something like
\tracingall would be inadvisable, as that would
show the internal coding and not the expected func-
tionality.

The result of running such a test file would then
be manually verified and stored away as a certified re-
sult. However, as many readers will already be aware,
IETEX’s .log files contain a lot of irrelevant data,
some of which differs from run to run and some of
which differs when running on different installations.
So to make this approach workable we introduced
a cleanup step in which we modified the result files
removing irrelevant material and normalized some of
the remaining parts. Of course one has to be careful
not to sanitize too far, but we found a number of
things necessary or at least advisable, including

e shortening file path info to avoid differences
between installations

e drop empty lines (different TEX implementations
put in different numbers of these)

e drop line numbers in ‘on line <num>’ to avoid
differences just because extra lines got intro-
duced in a test file.

Putting it all together we ended up with a system
consisting of test files (with the extension .1vt), cer-
tified result files to compare against (extension .tlg)
and a fairly complex Makefile and a number of Perl
scripts used to run the different tasks. These tasks
included running the test suite, producing the doc-
umentation and generating the distribution (ready
to be shipped to CTAN). It also contained a number
of special functions such as unpacking and locally
installing the code, cleaning up the source directories,

Frank Mittelbach, Will Robertson and The IATEX3 team

TUGboat, Volume 35 (2014), No. 3

checking individual test files, and producing a new
.t1g file for a given test file.

2.3 The new needs (in the new century)

As mentioned above, the initial system served us
well, when moving from KTEX 2.09 to BTEX 2¢ and
then throughout the '90s, which had very active
IMTEX 2¢ development with releases produced at half-
year intervals.

In this century, development of the core of the
KTEX 2¢ kernel has slowed to a minimum (releases
are now only every couple of years and the changes
are small) while it has intensified in other areas such
as actively progressing the development of the IATEX3
programming language expl3. With this new focus,
newly important requirements for a regression test
system became apparent.

Instead of a single distribution we now had to
deal with a growing number of distributions: core
BTEX 2¢ and its packages, Babel (with a different
release cycle), expl3 and possibly smaller and larger
distributions of third party code that also wanted to
benefit from a functional regression test system.

Windows and Mac OS X became the operating
systems of choice for several developers and the Make-
file approach of the original test suite did not work on
Windows and only with modifications on Mac OS X.

Last but not least, a number of new TEX-based
engines matured and people now wanted to use BKTEX
and friends not only on pdfTEX but also on these new
engines all of which provided additional capabilities.
These new engines showed a number of subtle differ-
ences when adding data to the .log file, or due to
extended capabilities showed additional data (such
as extra nodes in listings). Furthermore the new
engines still have bugs and a number of them showed
up when we initially ran test files and compared their
output with the certified .tlg data.

Thus testing became a multi-dimensional prob-
lem: one had to verify test results with several en-
gines and it had to work on multiple operating sys-
tems. Furthermore new code sources posed new or
different requirements for building a distribution or
doing the testing and we soon found that the original
approach made a number of hardwired decisions that
were no longer applicable if the system was used with
a distribution different from ATEX 2¢.

For a short while we tried to accommodate the
need for Windows support by using a set of .bat files
in parallel with the Makefile approach but obviously
that was doomed to failure, being impractical to
maintain. Another avenue we explored was switch-
ing to a fully Perl-based approach (using Cons) but
that again didn’t work well with Windows and fur-

289

thermore it would have been a solution not available
out of the box on any TEX installation.

Eventually, we decided to apply the same prin-
ciple used long ago with docstrip.tex: use the
scripting language with some operating system ca-
pabilities that is available out of the box on all TEX
installations. Back then the answer was that only
TEX itself fit that bill and so TEX became the tool
to build style files, etc., from .dtx sources. However,
while TEX as such is too limited to be used for script-
ing a regression test system, we now had LuaTgX as
an engine that offers a full-fledged Lua interpreter —
and these days LuaTgX is part of all modern TEX
installations.

Moving to Lua (or texlua to be precise) means
that the test and distribution system is now not tied
to either the operating system (as the script runs on
Windows and Unix variants) or to third-party tools
(as Lua is available as part of a modern TEX system).

— — % — —

In the remaining sections of this article we describe
the new system and how it can be applied to support
arbitrary code within the TEX world.

3 Overview of the new system

To illustrate, a hypothetical package will be described
that uses the new system: consider a package abc
with a collection of source files in the following layout.

abc/
abc.dtx
abc.ins
build.lua
README
testfiles/
testl.lvt
testl.tlg
support/
abc-test.cls
What is added in addition to the normal source files
is a short Lua script, normally called build.lua.
Test files and their certified results are located in the
folder ‘testfiles/’ with extensions .1lvt and .tlg,
respectively. The files in support/ (if any) are used
when running the test files.

Upon running the test suite, a new folder ‘build’
is created in which the package is unpacked, support
files are copied across, and each test file is run in turn
and compared to its original .tlg file. Directories
and file names are adjustable and other setups are
possible; the above structure is simply the default.

13build — A modern Lua test suite for TEX programming

290

3.1 Modes of testing

The best way to perform regression tests for TEX
programming is to use the .log file; only here can box
content be tested, not just logical and programmatic
constructs. Box content is essential for checking from
the very highest level that code changes do not result
in different typeset output.

TEX programming can be either ezpandable or
not. Code that is expected to be expandable should
be tested as such. This can be done by evaluating
it within something like \typeout (in the case of
KTEX). For non-expandable tests one should out-
put their results to the .log once they have been
evaluated. As mentioned earlier there are also a
number of TEX tracing parameters and commands
like \showbox, \showlists, or \showthe that can
be used to generate relevant test data in the . log file.

To aid in producing a structured test suite we
provide a number of commands for use in the test
files. The \TYPE command is used to write material
to the .log file; it works like \typeout, but it allows
‘long’ input. A variety of commands, following, then
use \TYPE to output strings to the .log file.

e \SEPARATOR inserts a long line of = symbols to
break up the output.

e \TRUE, \FALSE, \YES, \NO insert text strings for
standardized comparison.

e \ERROR is not defined but is commonly used
to indicate a code path that should never be
reached.

To produce individual tests we offer the commands
\TEST and \TESTEXP. These commands take two ar-
guments: a title and the actual test body. \TESTEXP
executes the body within a \TYPE command to test
expandability but with \TEST you are responsible for
generating test output using \TYPE, \TRUE, etc. as
it is intended to be used for non-expandable tests.
Both commands surround the generated output with
\SEPARATORs and display the title and a test number.
Here is an example:

\begin{TEST}{stepping counters}
{
\setcounter{chapter}{2}
\setcounter{section}{5}
\setcounter{subsection}{4}
\stepcounter{chapterl}’,
\TYPE{\arabic{chapter}-/
\arabic{section}-\arabic{subsection}}
\SEPARATOR
\refstepcounter{section}
\TYPE{\arabic{chapter}-¥%
\arabic{section}-\arabic{subsection}}

TUGhboat, Volume 35 (2014), No. 3

This test will then produce the following output, as
in standard TEX only a counter directly “within’
is reset to zero (e.g., the subsection counter is not
touched when chapter is stepped):

)

TEST 8: stepping counters

3-0-4

3-1-0

(Assuming it’s the eighth test in the file.)

4 Setting up the regression test system

Consider the case that a IATEX package consists of
one or more .dtx files in a flat directory structure.
By default, to set up a regression test suite, you
would create a driver file named ‘build.lua’ and
sub-folder named ‘testfiles/’ to contain the test
files. An example driver file is shown in Section 4.2.

The test files can be called basically anything
(but should be logical in some way), and by default
have the extension .1lvt. These are accompanied
by a pre-saved .tlg file which contains the ‘results’
of the test file to be checked against subsequent
compilation of that test. If a test file has different
results for different engines it is possible to “certify”
.t1lg files for each engine; those then have extensions
such as .luatex.tlg.

4.1 Creating and checking test output

The first time a .1vt test file is written, it will need
to be compiled to obtain the necessary .tlg output
for future tests. This is performed with:

texlua build.lua save (test name)

(To produce an engine-specific . t1g file an additional
(engine) argument can be given.) This task can be
re-run as many times as necessary until the test file
demonstrates the necessary behaviour being tested.
At this point,

texlua build.lua check (test name)

will then re-run the .1vt file and compare the result
to the original .tlg output. If no (test name) is
specified all tests in the test directory are run. Pre-
suming no code has changed to affect the output of
the tests, the console output of this task will show
the name of the test files being processed followed
by the line:

A1l checks passed
If only one test file is run the usual console output
from the TEX compilation is also shown otherwise it
is suppressed.

Frank Mittelbach, Will Robertson and The IXTEX3 team

TUGboat, Volume 35 (2014), No. 3

#!/ usr/bin/env texlua

—-- Build script for abc package
module = "abc"

-- variable overwrites (if needed)
-- call standard script

kpse.set_program_name ("kpsewhich")
dofile (kpse.lookup ("13build.lua"))

Figure 2: Driver file for a hypothetical abc package

\documentclass{breqn-test}

\input{regression-test}

\usepackage{breqn}

\begin{document}

\START

\AUTHOR{Will Robertson}

\begin{dmath}

a+b+c+d+e+f+g+h+i+j+k+1+m+
n+o+p+qtr+s+t+utviutx+y+z

\end{dmath}

\showoutput

\end{document}

Figure 3: Example test from breqn

These compilations take place in the subdirec-
tory ‘build/test’, and if a test fails, a diff file is
deposited there with the information about what has
changed in the output of the test file. Also deposited
there are the full .log files for each (engine) (i.e.,
without modifications from the cleanup step) which
can be helpful to debug complex issues.

4.2 An example driver file

For a simple setup such as shown in the overview in
Section 3, the driver file (build.lua) is quite simple.
An example of such a driver file is shown in Figure 2;
it need do little more than inform the build system of
the name of the package and perhaps set some flags
or change some defaults if they are not adequate.

The main script is 13build.lua, which is auto-
matically found in the texmf tree (via kpsewhich)
and then loaded. Thus, there is no need to hard-
wire locations in the driver file and it will work on
different installations.

4.3 The structure of test files

As mentioned previously, the method of using the
.log file allows various types of tests to be conducted.
The most simple test might load a package and exe-

291

cute some commands to produce a small amount of
typeset output. A complete example of such a test
is shown in Figure 3. Some points to note:

1. The first line, \input{regression-test} loads
the necessary settings and commands to format
the .log file properly for testing.

2. It is not necessary to load a special document
class (most tests use article or minimal), but a
package author may wish to adjust page margins,
etc., without repeating the commands for each
test. Such a special test class or package could
then be kept in the support/ directory.

3. The test begins proper at \START — everything
before that point in the .log file will be ignored.
This prevents, for example, package version num-
bers displayed while the preamble is processed
from becoming part of the test. The \AUTHOR
declaration is an optional way of indicating who
might know how to fix the problem should the
test begin failing.

4. In this example \showoutput generates the ac-
tual test data by generating a symbolic repre-
sentation of the page content in the .log file.

5. A slightly modified version of \end{document}
finishes the test document. Alternatively, one
can end the test file with \END which avoids
the final processing done by \end{document}
and thus prevents unwanted material from be-
coming part of the test data. In this example
\END cannot be used as that would stop the run
immediately without producing a page — which
is our goal here.

Not shown is the \OMIT ... \TIMO construction, which
puts flags into the .log file between which no test
comparisons will be made. This can be used around
code that generates variable log information that is
known to be irrelevant for the test. For example,
statements like \newlength or \newcounter write
some tracing information into the .log that shows
the allocated register number. If the code gets revised
these numbers might change and thereby unneces-
sarily invalidate the test result.

\OMIT can also be used before \end{document}
if you need the final processing to happen, but want
to ensure that nothing written at that time becomes
part of the test.

An example of a more structured test from the
IXTEX3 test suite is shown in Figure 4. Here, a
number of different tests are contained within a single
file, and a few of these are included in the example.
The content of the test is not really important here (it
is testing aspects of the integer module from expl3)
but it does show a few best practices.

13build — A modern Lua test suite for TEX programming

292

\OMIT/\TIMO is used to hide the register alloca-
tion numbers from \int_new:N. The first test then
exercises integer addition and subtraction which is
not expandable (therefore \TEST together with \TYPE
is used) and it consists in fact of several small tests.
The expected results are written as comments into
the test file which is helpful in case it ever fails.

Converting integers is supposed to be expand-
able so \TESTEXP is used for the second test. The
same is true for the case selection commands. Here
the test output is generated by \YES or \NO.

Can you guess the test results, even if you are
not familiar with the expl3 language? They are
shown in Figure 5.

4.4 Options

While the examples shown previously demonstrate
the behaviour in the standard setup, the new build
system provides significantly greater flexibility. This
is achieved by providing a large number of variables
that can be (re)set as necessary in the driver file. For
example, the new system supports building complex
distributions consisting of several modules in different
directories with dependencies between them. You
can also control if the processing should happen in a
sandbox or if it is allowed to draw any support files
needed for the tests (e.g., extra packages or classes)
from the TDS tree. The latter is the default as this
is better for most distributions. For details consult
the documentation in [4].

There is one option that one may have to modify
even for simple setups: checkruns. This controls
the number of times each test file is run; to speed
up processing it defaults to 1. If, however, the codes
require multiple runs to function (e.g., if you test
material that is passed through the .aux file) you
have to set this variable to 2 or higher to ensure that
your tests actually work correctly.

5 Operating the system

As indicated earlier the system does a bit more than
managing a set, of test files, so here is a short descrip-
tion of the main tasks that can be executed once
the setup is in place. Each task takes zero or more
arguments as described below and is executed by
running the driver file (default build.lua) through
a Lua interpreter (texlua) and passing it the task
name and any further argument as necessary, e.g.,

texlua build.lua check (test name)

would run the check on (test name) using all engines.
So here is the list of available tasks:

check (name) (engine) Without arguments, runs
all test files found in the directory that contains

TUGhboat, Volume 35 (2014), No. 3

\documentclass{minimal}
\input{regression-test}
\RequirePackage{expl3}

\begin{document}

\START

\AUTHOR{Frank Mittelbach, LaTeX3 Project}
\ExplSyntaxOn

\OMIT
\int_new:N \1l_testa_int
\int_new:N \g_testa_int
\TIMO

\TEST { adding~and~subtracting }
{
\int_zero:N \l_testa_int
\int_add:Nn \1_testa_int { 56 * 7 }
\int_add:Nn \1l_testa_int { 15 }
% we hope for a value of 50
\TYPE { \int_use:N \1l_testa_int }
\int_sub:Nn \l_testa_int { 3 * 5 }
% we hope for a value of 35
\TYPE { \int_use:N \1l_testa_int }
\int_gzero:N \g_testa_int
{
\int_gadd:Nn \g_testa_int
{(@+13) / (2%3)}
\int_gadd:Nn \g_testa_int { 3 }
% we hope for a value of 6
\TYPE { \int_use:N \g_testa_int }
\int_gsub:Nn \g_testa_int { 5 * 5 }
}
% we hope for a value of -19
\TYPE { \int_use:N \g_testa_int }
}

\TESTEXP { converting~from~and~to~base }
{

\int_to_base:nn { 17 }

1

}o-
\int_from_base:nn { 2 8

{8
r{s8}
}
\TESTEXP{ Case”statements }
{
\int_case:nnn
{-1+11}
{{ -1+ { \NO}
{3-3}{\YES}}
{ \NO }
\NEWLINE
\int_case:nnn
{7-21%
{{-1+3X{\NO2}}
{ \YES }
}
% more tests here omitted
\END

Figure 4: Expandable and non-expandable tests

Frank Mittelbach, Will Robertson and The IATEX3 team

TUGboat, Volume 35 (2014), No. 3

TEST 1: adding and subtracting

50
35
6
-19

TEST 2: converting from and to base

21 17

TEST 3: Case statements

YES
YES

Figure 5: Test results

the .1vt files. It reports progress by displaying
each test file name currently processed (but oth-
erwise hides any TEX output to avoid cluttering
the screen) and at the end displays a summary
indicating success or failure.

If (name) is specified, it will run only the tests
for that .1vt file, and if additionally given an
(engine) name will run only the test for that
specific engine. In either case it will show ev-
erything on the screen, which is helpful if the
run shows abnormal behaviour (especially if it
ends up in an endless loop and never returns for
some reason).

clean Cleans up the source tree, removing tempo-
rary files and directories.

ctan Runs all tests, typesets all documentation
and if there are no errors, generates a .zip file
suitable for uploading to CTAN.

doc Typesets all documentation (by default .dtx
files), thus checking them for trivial processing
errors.

install This installs the distribution in the local
tree of the user.

save (name) (engine) This generates (or regener-
ates) the .tlg file for (name). If additionally
supplied an (engine) argument it generates a
specific .tlg as discussed above.

It is the responsibility of the developer to ver-
ify that the data placed into the .tlg produces
the desired result, i.e., is actually correct. Once
produced or updated with save, the output is

293

considered certified and will be used to verify
future check runs!

6 Acknowledgements

The original test suite system was a joint effort by the
whole IXTEX project team at that time, i.e., Frank
Mittelbach, Rainer Schopf, David Carlisle, Michael
Downes, Alan Jeffrey, and Chris Rowley. We also
had significant help when writing the initial set of
test files from a number of volunteers, in particular
Daniel Flipo and Chris Martin.

Around 2008 Rainer replaced the Makefile ap-
proach used for BTEX 2 by Cons (a Perl-based solu-
tion) as the Makefile got so complex over time that
it was difficult to manage.

For the IXTEX3 development we stayed with
Make as the requirements of the expl3 distribution
were initially much simpler.

Joseph Wright wrote a first set of .bat files
for expl3, as by then many developers worked on
Windows. Modelled after this, Frank replaced the
Cons solution for IMTEX 2¢ in 2013.

Finally in 2014 Joseph then implemented most of
the new Lua-based system and it is now successfully
used to manage the WTEX3 (expl3) distribution as
well as several smaller package distributions. The
IMTEX 2¢ distribution will follow shortly.

References

[1] Donald E. Knuth. A torture test for TEX.
Report STAN-CS-84-1027, 1984.

[2] Frank Mittelbach. A regression test suite for
BTEX 2:. TUGboat, 18(4):309-311, December
1997. http://tug.org/TUGboat/tb18-4/
tb57mitt . pdf

[3] Frank Mittelbach. A modern regression
test suite for TEX programming, July
2014. Talk given at TUG conference in
Portland. Video and slide material available at
http://www.latex-project.org/papers.

[4] TEX3 Project. The I3build package: Checking

and building packages, September 2014.
http://ctan.org/pkg/13build

¢ Frank Mittelbach
Mainz, Germany

o Will Robertson
School of Mechanical Engineering,
The University of Adelaide,
Australia

o The KTEX3 team
http://www.latex-project.org

13build — A modern Lua test suite for TEX programming

