TUGboat, Volume 33 (2012), No. 3

Experiences with Arabic font development
Sherif S. Mansour, Hossam A.H. Fahmy

Abstract

This is a report of our experiences attempting to use
a new font, AlQalam, for the Arabic script within
TEX. Then we want to make use of the new features
introduced in LuaTgX to build our context analy-
sis and line breaking engines to achieve a complete
functional font package. We describe the challenges
of producing high-quality Arabic fonts in general
and what AlQalam has introduced to meet Arabic
script requirements. We also describe the problems
we faced trying to figure out how to use a new right-
to-left font within TEX, what approaches we used
to debug the font and some debugging results. This
remains work in progress.

1 Arabic script and Naskh style

The Arabic alphabet is used to write many languages
in many places around the world. Also, Arabic is of
great importance to Muslims (about a quarter of the
world’s population), as it is the liturgical language
of Islam.

The most distinctive features of the Arabic al-
phabet are that it includes 28 letters and is written
from right to left in cursive style, i.e., many or all
letters in a word are connected.

Arabic has six major writing styles: Kufi, Thu-
luth, Naskh, Riq’aa, Deewani, and Ta’liq. Naskh
style is the most commonly used for printing, in
both traditional texts such as the Muslim Holy Book
(the Qur’an) as well as contemporary publications.

2 Challenges in producing high-quality
Arabic fonts

The main challenge of producing high-quality Arabic
fonts is that Arabic calligraphy is an art. The rules
to follow when composing Arabic texts have great
flexibility in choosing different variations of letter
forms and constructing complex ligatures. These
variations and ligatures add an aesthetic touch to
the script and also justify the text as needed.
Every Arabic letter may have four basic forms
depending on its location in the word: initial, medial,
final, and isolated. Fig. 1 shows the different forms
of the “Baa” letter as an example. Every letter form
may have different variations to be used depending
on the preceding or succeeding letter. Fig. 2 (taken
from [8]) for example shows the different variants of
the forms of “Baa”. The first shape (starting from
the right side of the first line) is the isolated “Baa”
form variant. The second, third and sixth shapes

295

-

»

A A

Figure 1: From right to left: initial, medial, final, and
isolated forms of “Baa”

/. 4
-] cao A ()
A b“/ i
° o
t t t %

(D)W (&) 2w slo P\l (5500 50)

19 o0
il " \O o
s t t 24
el il (o3 W (L) WD

Figure 2: Letter “Baa” form variations

are initial form variants of “Baa” when rising letters
like “Alef” precede it, letters like “Jeem” precede it
and letters like “Seen” precede it, respectively. The
fourth and fifth shapes are medial form variants of
“Baa” when letters like “Haa” and letters like “Raa”
precede it respectively. The seventh shape is the
general medial form variant of “Baa” and the last
shape is a final form variant of “Baa”.

Fig. 3 shows a part of Mushaf Al-Madinah (The
Holy Qur’an— Madinah print) [1] as a rich example
of the usage of different combinations of variations
with different elongations. This printing, like most
printings of the Qur’an, was hand-written by a cal-
ligrapher and is not typeset. Computer typesetting
(and to a large extent also traditional mechanical
typesetting) are well behind what a calligrapher can
produce for such complex texts.

The underlined shapes represent the same Ara-
bic letter, which is “Kaf”. Notice the different forms
used depending on the location of the letter in the
word and notice that some forms have different vari-
ations depending on the elongation requirements for
line breaking, text justification and preceding or suc-
ceeding letters.

3 The font AlQalam and its features

Several trials were performed to produce high-quality
Arabic fonts. One of them was a project named
AlQalam (“The Pen” in Arabic), started in 2005 un-
der the co-author’s supervision [3]. AlQalam’s target
was to simulate an Arab calligrapher’s pen for Naskh
style (as used to typeset the Qur’an printing, for ex-
ample). AlQalam then might be used in typesetting
any traditional texts as well as any generic publi-

Experiences with Arabic font development



296

\‘SZ.T.ALAU‘,A L;J:a:;ag ;\tjt\/ f\;_:.)\; J:::

o) 22553 458 36 (Y M)\,,J;Jmﬁél

Ll s vl

% v Lo A
L—AA"'\{Z)‘\-‘@&_)J)G_)Q" uéous

- -

ff\ Y j

Figure 3: An example from surat Hud: forms of Kaf

cations (including scientific ones) in the languages
using the Arabic script.

At first, AlQalam grew out of modifications to
ArabTEX [4]. Modifications were mainly intended
to respond to the specific needs of typesetting the
Qur’an such as adding pause signs, some additional
diacritics (marks used as phonetic guides) and the
abilities to stack them on top of each other, scale
them and correctly position them on the word. Also,
some modifications to the pen used were made to
improve the shape of some letters and symbols.

In 2008, a new font project for AlQalam was
started [7]. That font is meta-designed such that each
character is described by a number of parameters to
allow the creation of many variants that connect with
the surrounding characters correctly. Those variants
may be different in shape and in their amount of elon-
gation. Starting from this period many modifications
were made and new features added.

AlQalam’s font features up till now:

1. All font shapes are meta-designed using META-
FONT to enable greater flexibility while joining
glyphs together and provide smoother letter ex-
tensions.

2. It contains the generic four different forms of
Arabic letters (initial, medial, final, and iso-
lated).

3. It also contains different parameterized shapes
for letter forms (the main source of the form
variants is Mushaf Al-Madina).

4. Tt is based on the concept of primitives (reusable
glyphs). For example, Fig. 4 shows the Waw
head primitive (the small circle). This Waw
head is reused in combination with the body
(skeleton) of letter “Baa” to produce the letter
“Faa”. Also, the “Waw” head can be reused in
combination with the body of the letter “Noon’
to produce the letter “Qaf”.

5. The font supports vertical placement of glyphs:
Various ligatures have been added to the font

)

Sherif S. Mansour, Hossam A.H. Fahmy

TUGhboat, Volume 33 (2012), No. 3

Mo, ¢

P
@ d*“ LN

Figure 4: The “Waw” head primitive

.M}_}_)é

Figure 5: Vertical placement of glyphs

SBTIEINIT

P V- RS Ve

T T

Figure 7: Joining glyphs with smooth, dynamic
kashidas

QoA o oo
T

Figure 8: Static fixed length kashidas

_t —is7-¢ .

Figure 9: Parameterized diacritics

to support complex vertical placement combina-
tions as shown in Fig. 5.

6. Kerning: Borders of letter boxes have been ad-
justed to support kerning as shown in Fig. 6.

7. Joining glyphs with kashidas: the kashida is the
most widely used glyph to join letters. AlQalam
implements the kashida as a dynamic smooth
glyph, as shown in Fig. 7 [2]. This is preferable
to the current standard fonts that implement
the kashida as a static fixed length glyph, as
shown in Fig. 8.

8. Parameterized diacritics: A complete set of pa-
rameterized diacritics that can be elongated ac-
cording to the width of the associated letter is
available, as shown in Fig. 9.

9. Mathematical symbols: AlQalam is one of three
fonts that have a complete set of Arabic math
symbols at the time of writing. (The other



TUGboat, Volume 33 (2012), No. 3

J'\.—-U-,_)l-! Q‘b a»\jq0=f-u-,:_>g15!.
1z ollale M= u...uu.@'tu:.-_g‘[-

I!I =
Y+

NP

RENENIE

Figure 10: Set of Arabic mathematical equations
typeset with AlQalam

sipiRzal N7l =.

Figure 11: Character boxes approach

two fonts are RyDArab [5] and Mathfont [6].)
Examples for Arabic equations generated using
AlQalam are shown in Fig. 10.

4 Calling the different shapes of a letter

Testing of individual shapes was done along with the
development of the font letter forms, form variants,
mathematical symbols, etc. Once the basic develop-
ment was finished, testing of the letters’ positions
against the baseline and against each other when
included in the same word was needed. In addition,
there was a need to perform checks for missing forms,
to assure smooth joins between letters and correct
kerning.

This drove us to call the METAFONT letters
under TEX to debug the font. To do that, two ap-
proaches were possible:

1. Define the character’s borders through boxes,
similar to the Latin script, and define a char-
acter for each shape and with fixed elongation
as shown in Fig. 11. This approach, by defini-
tion, must have a finite number of characters in
the font at the end. Such a finite, i.e. limited,
number of characters means that we must use
only a limited set of values for the parameters of
each character. So, while debugging we used for
example only the “Noon” form shown in Fig. 12
despite the font’s capability to generate elon-
gated shapes of this form as shown in Fig. 13.

2. Using LuaTEX’s embedded Lua and METAPOST
engines to call the correct shape with the suit-
able elongation value. The main advantage of
this approach is that we will be able to benefit

297

>

O

Figure 12: Isolated form of the letter “Noon” without
elongation

@

Figure 13: Isolated form of the letter “Noon” with
different elongation values

from all the font features. But lacking experi-
ence in this approach made us think that we
should postpone using it to the next phases, as
more time will be needed to debug it.

Hence we started with the first approach to com-
plete the current debugging phase. Meanwhile we will
learn about the possibilities of calling METAPOST
from within LuaTEX in order to generate dynamic
fonts in the future.

5 Problems found during font debugging

As expected, some bugs appeared when using the
font under TEX. If we take a look at Fig. 14 we can
easily notice the bugs, from right to left as follows.
The first and fifth cross signs mark a kerning bug
with the letter “Waw” as it appears too far from
the succeeding letter. The second and fourth signs
mark bad joins of letter “Ain”. Also the letter shape
itself needs some modifications as marked by the
third sign. More bad joins appear between letters
“Qaf” and “Sad” and letters “Lam” and “Dal” as
marked by the sixth and ninth signs. The seventh
sign marks a missing letter that should be added to
the font package. The eighth sign marks a mistake
in specifying the border of letter “Alef” that caused
it to be too close to the succeeding letter.

We have worked on fixing these bugs and many

Experiences with Arabic font development



298

TEP R P LR

Figure 14: Font state at an early debugging phase

-XJ ['} ‘Lﬁé -3 3
X =0
Figure 15: Font state after fixing bugs

others that appeared in turn, to get to a state with
the font that made us ready to move to the next
step (despite having very few joining bugs as shown
in Fig. 15). This is implementing the multi-layer
context analysis algorithm to make using the font
more user friendly, by automatically choosing the
suitable letter forms and form variants instead of the
user having to do so manually.

6 Work in progress and future work

First, adding context analysis via LuaTEX’s embed-
ded Lua and METAPOST engines: This will enable
calling the suitable METAFONT form with the suit-
able elongation parameters according to context.
Multi-layer context analysis is expected, as a ba-
sic layer would be needed to choose the suitable form
of the letter according to its preceding or succeeding
letter, and a second layer would construct ligatures,
correctly update the positions of the diacritics and
associated symbols and also control the elongation
parameters according to the text justification require-
ments. We are currently working on implementing
the first layer.

Second, implementing a new line breaking algo-
rithm with a new penalty system that supports usage
of elongation, ligatures, form variants in addition to
spacings when taking the breaking decisions [2]. A
dialogue between METAPOST and TEX about word
widths and line width requirements is expected. This
will be performed through the usage of LuaTEX’s
callbacks feature to override the main algorithm.

Sherif S. Mansour, Hossam A.H. Fahmy

TUGhboat, Volume 33 (2012), No. 3

References

[1] The Holy Qur’an. King Fahd Complex for
Printing the Holy Qur’an, Madinah, KSA,
1986.

[2] Mohamed Jamal Eddine Benatia, Mohamed
Elyaakoubi, and Azzeddine Lazrek. Arabic text
justification. TUGboat, 27(2):137-146, January
2007.

[3] Hossam A. H. Fahmy. AlQalam for
typesetting traditional Arabic texts. TUGboat,
27(2):159-166, January 2007.

[4] Klaus Lagally. ArabTEX — Typesetting
Arabic with vowels and ligatures. In Jifi
Zlatuska, editor, FuroTEX ’92: Proceedings
of the 7th European TgpX Conference, Prague,
Czechoslovakia, September 14—18, 1992,
Proceedings of the European TEX Conference,
pages 153—-172, Brno, Czechoslovakia,
September 1992. Masarykova Universita.

[5] Azzeddine Lazrek. RyDArab— Typesetting
Arabic mathematical expressions. TUGboat,
25(2):141-149, 2004.

[6] Mathfont. http://mhafiz.deyaa.org/
mathfont.html.

[7] Ameer M. Sherif and Hossam A. H. Fahmy.
Meta-designing parameterized Arabic fonts for
AlQalam. TUGboat, 29(3):435-443, January
2008.

[8] Ahmad Sabry Zayed. Ahdath Al-turug Leta‘leem
Al-khotot Al-‘arabiya [New methods for learning
Arabic calligraphy]. Maktabat ibn-Sina, Cairo,
Egypt, 1990.

o Sherif S. Mansour, Hossam A.H. Fahmy
Electronics and Communications Dept.
Faculty of Engineering, Cairo University
Egypt
sherif.s.mansour (at) gmail dot com
hfahmy (at) alumni dot stanford dot edu



