General Delivery

Fonts

Publishing

Software & Tools

IATEX
IATEX 3

ConTEXt

Electronic Documents

Problems

Hints & Tricks
Abstracts

News
Advertisements

TUG Business

158
158

160
161

175
177

184

191

194
195

197
203

208
213

219

223

227

229
230
231
233
236

237
238

239
240

TUGBOAT
Volume 31, Number 3 / 2010

From the president / Karl Berry

Editorial comments / Barbara Beeton
Matthew Carter named MacArthur Fellow;
Indie Excellence Awards for self-published books;
City maps made entirely of type; U&lc on line;
Some “under-the-covers” uses of TEX; Beyond literate programming

Hyphenation exception log / Barbara Beeton
A story of kpfonts: Reaching the limits of NFSS / Christophe Caignaert

Giving it away / Jim Hefferon
Glisterings: Meandering miniature books / Peter Wilson

Three things you can do with LuaTEX that would be extremely painful otherwise /
Paul Isambert

Some misunderstood or unknown IATEX 2¢ tricks II / Luca Merciadri

IATEX3 news, issue 3 / IATEX Project Team
From \newcommand to \DocumentNewCommand with xparse / Joseph Wright

Tagged PDF in ConTEXt / Hans Hagen
Introduction to colours in ConTEXt MKiV / Luigi Scarso

Generate TEX documents using pdfscript / Oleg Parashchenko

illumino: An XML document production system with a TEX core /
Matteo Centonza and Vito Piserchia

Managing printed and online versions of large educational documents /
Jean-Michel Hufflen

Aligning text in diagrams exported by Mathematica: A question about the
PostScript infrastructure / Michael Barnett

The treasure chest / Karl Berry

ArsTpXnica: Contents of issue 9 (October 2010)
MAPS: Contents of issue 40 (2010)

The PracTEX Journal: Contents of issue 2010-1
Zpravodag: Contents of issues 20(1-2), 20(3) (2010)
Die TgXnische Komddie: Contents of issue 2010/3

Calendar
TEX consulting and production services

TUG institutional members
TUG 2011 election

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions
2010 dues for individual members are as follows:

= Ordinary members: $95.

= Students/Seniors: $55.
The discounted rate of $55 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright © 2010 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another language,
except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’
Karl Berry, President*

Kaja Christiansen®, Vice President

David Walden*, Treasurer

Susan DeMeritt*, Secretary

Barbara Beeton

Jon Breitenbucher

Jonathan Fine

Steve Grathwohl

Jim Hefferon

Klaus Hoppner

Ross Moore

Steve Peter

Cheryl Ponchin

Philip Taylor

Raymond Goucher, Founding Fxecutive Director?
Hermann Zapf, Wizard of Fonts?

*member of executive committee

Thonorary

See http://tug.org/board.html for a roster of all
past and present board members, and other official
positions.

Addresses Electronic Mail

TEX Users Group (Internet)

P.O. Box 2311 General correspondence,
Portland, OR 97208-2311 membership, subscriptions:
U.S.A. office@tug.org
Telephone Submissions to TUGboat,

+1 503 223-9994 letters to the Editor:

TUGboat@tug.org

Fax Technical support for
+1 206 203-3960 TEX users:
support@tug.org

Web
http://tug.org/
http://tug.org/TUGboat/

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: November 2010]

Printed in U.S.A.

TUGBOAT

The Communications of the TEX Users Group

Volume 31, Number 3, 2010

ot
I

]

! y H

\55/4

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions
2010 dues for individual members are as follows:

= Ordinary members: $95.

= Students/Seniors: $55.
The discounted rate of $55 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright © 2010 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another language,
except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’
Karl Berry, President®

Kaja Christiansen®, Vice President

David Walden*, Treasurer

Susan DeMeritt*, Secretary

Barbara Beeton

Jon Breitenbucher

Jonathan Fine

Steve Grathwohl

Jim Hefferon

Klaus Hoppner

Ross Moore

Steve Peter

Cheryl Ponchin

Philip Taylor

Raymond Goucher, Founding Fxecutive Director?
Hermann Zapf, Wizard of Fonts'

*member of executive committee

Thonorary

See http://tug.org/board.html for a roster of all
past and present board members, and other official
positions.

Addresses Electronic Mail

TEX Users Group (Internet)

P.O. Box 2311 General correspondence,
Portland, OR 97208-2311 membership, subscriptions:
U.S.A. office@tug.org
Telephone Submissions to TUGboat,

+1 503 223-9994 letters to the Editor:

TUGboat@tug.org

Fax Technical support for
+1 206 203-3960 TEX users:
support@tug.org

Web
http://tug.org/
http://tug.org/TUGboat/

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: November 2010]

Printed in U.S.A.

When we designed Lucida Sans Typewriter way back
in 1986, there was debate then, as now, whether the

slashed zero was utterly ugly or absolutely necessary
to differentiate zero from cap O.

Chuck Bigelow,
personal communication (2010)
Why can’t it be both?
Kris Holmes, in reply (2010)

TUGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
EpitTor BARBARA BEETON

VoruMmE 31, NUMBER 3 . 2010

PORTLAND

OREGON . U.S.A.

158

TUGhboat, Volume 31 (2010), No. 3

From the President
Karl Berry

Conferences

TUG 2010 (http://tug.org/tug2010) was a great
success, with Don Knuth’s earthshaking (or at least
side-splitting) announcement, and numerous partic-
ipants from all over the TEX world. Video record-
ings of many talks are at http://river-valley.tv/
conferences/tug-2010, thanks to Kaveh Bazargan
and River Valley Technologies.

As part of the conference, a commemorative
book was prepared, with selected articles from TUG-
boat by the Stanford TEX project members, along
with a foreword by Barbara Beeton and drawings by
Duane Bibby, some especially commissioned for the
anniversary. The hardcover book is available from
the TUG store and general online bookstores. Also,
the full PDF is available online to TUG members in
the members area—http://tug.org/store/tuglO.

Looking ahead to 2011, the TUG meeting will
be held in Cairo, Egypt, from November 14-17. Hos-
sam Fahmy, long-time TUG supporter and TUGboat
contributor, is the chief organizer. http://tug.org/
tug2011 will be updated as planning proceeds.

http://tug.org/meetings has information on
most TEX meetings, past, present, and future.

Interviews

Since my last column, Dave Walden has interviewed
Bart Childs, Joe Weening, Frank Liang, and Her-
bert Vof3 for the TUG Interview Corner (http://
tug.org/interviews).

Incidentally, the book of interviews we prepared
last year is still available —http://tug.org/store/
texpeople. The full PDF for this book is now also
in the TUG members area.

Software

The 2010 release of the TEX Collection software was
made near the beginning of September. It’s been
available for download from CTAN since that time.
The physical DVDs have been manufactured and
should begin mailing as this TUGboat goes to press.

The 2010 release contains the same major items
as in the past few years: TEX Live, MacTEX, proTEXt,
and a CTAN snapshot. More details at http://tug.
org/texcollection.

Again, we welcome anyone’s participation, from
testing the final candidate release to core develop-
ment. And thanks to all the many, many, people
involved already at every level.

¢ Karl Berry
http://tug.org/TUGboat/Pres/

Editorial comments

Barbara Beeton

Matthew Carter named MacArthur Fellow

Matthew Carter, type designer par excellence, is
among the 23 Fellows named by the MacArthur
Foundation for 2010. This award, sometimes called
a “genius grant”, consists of $500,000, no strings at-
tached, over a period of five years. It is awarded “to
talented individuals who have shown extraordinary
originality and dedication in their creative pursuits
and a marked capacity for self-direction.”
Carter’s citation reads, in part,

...a master type designer who crafts letter-
forms of unequaled elegance and precision for
a seemingly limitless range of applications and
media. Throughout his career, which spans
the migration of text from the printed page
to the computer screen, he has pursued ty-
pographic solutions for the rapidly changing
landscape of text-based communications. He
has cut metal letterforms by hand in the man-
ner invented over four centuries ago, created
enduring works for machine- and phototype-
setting, and produced many of the world’s
most widely used digital fonts.

Also among this year’s Fellows is Nicholas Ben-
son, stone carver, of the John Stevens Shop, New-
port, Rhode Island. Like his father and grandfather,
John and John, Jr. (“Fud”), Nicholas is a master
of hand letter carving and a calligrapher. The fam-
ily’s inscriptional works embellish many important
monuments and memorials in the U.S. In addition to
his practice of this craft, Benson is “committed to
teaching young artisans, who will create their own
works and ensure that the legacy of this centuries-old
artistic practice endures.” Benson is currently work-
ing in Washington, DC, on the new Martin Luther
King National Memorial, on a site halfway between
the Lincoln and Jefferson memorials. Nicholas is the
second member of the Benson family to be recognized
by the MacArthur Foundation; in 1986, his uncle
Richard, a photographer and emeritus dean of the
Yale University School of Art, was named a Fellow.

Carter and Benson are not the first “crafts-
men of letters” to be recognized as MacArthur Fel-
lows. Chuck Bigelow, creator with his partner, Kris
Holmes, of the Lucida fonts, and now Melbert B.
Cary Distinguished Professor at the Rochester Insti-
tute of Technology (the chair formerly occupied by
Hermann Zapf), was named a Fellow in 1982.

More information about the award and the Fel-
lows appears at www.macfound.org.

TUGboat, Volume 31 (2010), No. 3

Indie Excellence Awards for self-published
books

Increasingly, TEX users are choosing self-publishing.
The Indie Excellence Awards, now in their fifth year,
are sponsored by a marketing consultant with expe-
rience in bringing independently produced books to
public attention.

All English-language books available for sale on-
line or off, both e-books and in print, with publication
dates from 2008-2011 inclusive are eligible. The dead-
line for submission is 31 March 2011. An entry fee
is involved. Winners and finalists will be announced
in May 2011. See www.indieexcellence.com.

City maps made entirely of type

Have you ever tried to follow a street on a city map,
only to be interrupted by cross-streets, or to lose your
place when a very long street is named only at one
end? A new approach to the art of the city map uses
only type to delineate streets and other landmarks,
with striking and wonderfully comprehensible results.
The representation of Lake Michigan, off the Chicago
shoreline, is truly ingenious and evocative.

See an illustration at www.fastcodesign.com/
1662468/infographic-of-the-day-city-maps
-made-only-of-typefaces.

Uélc on line

Thanks to William Adams for spotting this item:
fonts.com is making back issues of Uélc available
as PDF scans.

The announcement and the first three issues
are available here: blog.fonts.com/2010/10/25/
ulc-back-issues-to-be-made-available/

William further comments, “I wish Adobe would
do this with their Font é Function magazine...”

Some “under-the-covers” uses of TEX

Jeffrey McArthur, on the pdftex mailing list (1ists.

tug.org/pdftex), responded to an inquiry regarding
the existence of TEX as a composition server with
information about some very large projects with
which he has been involved.

“Using UTF-8 encoding, and setting some char-
acters active to handle the UTF-8 escape sequences
[Jeffrey] typeset the Library of Congress Subject Mat-
ter headings. [...] The Library of Congress Subject
Matter was particularly difficult because Unicode
does not include all the glyphs needed ...” The
Library of Congress Subject Headings is a 4-volume
work comprising around 7,000 pages.

The Leadership Directories Yellow Books (www.

leadershipdirectories.com), each directory be-
ing about a thousand pages, and the Warren Com-

159

munications Television and Cable Factbook were also
prepared in a similar manner. All were composed

using Plain TEX.
Beyond literate programming

Another current discussion, in a thread “Callable
TEX” on texhax@tug.org, has raised the topic of the
evolution of computing and the lessening distinction
between a program and a document.

James Quirk pointed out a newspaper article
that appeared in the Manchester Guardian in Febru-
ary: “If you’re going to do good science, release the
computer code too.” The premise: since so much
scientific work is now being done by computers, the
only way to be certain that conclusions are valid is to
examine the programs that analyzed the data as well
as the human logic written up in scientific reports.

A comment on the article by James also ap-
pears at the newspaper’s website. The URLs are too
long to include here, but are linked from the thread
in texhax in this message: tug.org/pipermail/
texhax/2010-0ctober/015880.html.

James contends in his comment that not only the
computer code but the process by which it is applied
needs to be made visible, through “self-substantiat-
ing technical documents which allow the interested
reader to sample the reported work first-hand, right
down to its smallest detail.” He continues,

It has actually been possible to author self-
substantiating documents for a good ten years
now, but the effort involved has been too
high to make them practical for mainstream
scientific use. [...]

In fact, all the software pieces are now in
place that one could, today, take classic re-
search papers by the likes of von Neumann and
Turing and turn them into multi-threaded,
annotated affairs where the reader is walked
through the research material and allowed to
interact with computational examples that
help convey the importance of the work. The
basic idea being to produce “computational
classics” that rival literary ones; entities that
could be used to inspire generation, after gen-
eration, to want to seek careers in math, sci-
ence, and engineering.

Such “computational classics” would also
go a long way to defining computational stan-
dards, which at present are usually conspicu-
ous by their absence.

¢ Barbara Beeton
American Mathematical Society
tugboat (at) tug dot org

160

Hyphenation Exception Log

Barbara Beeton

This is the periodic update of the list of words that
TEX fails to hyphenate properly. The full list last
appeared in TUGboat 16:1, starting on page 12,
with updates in TUGboat 22:1/2, pp. 31-32; 23:3/4,
pp- 247-248; 26:1, pp. 5-6; and 29:2, p. 239.

In the list below, the first column gives results
from TEX’s \showhyphens{...}; entries in the
second column are suitable for inclusion in a
\hyphenation{. ..} list.

In most instances, inflected forms are not shown
for nouns and verbs; note that all forms must be
specified in a \hyphenation{.. .} list if they occur
in your document. The full list of exceptions, as a
TgX-readable file, appears at http://mirror.ctan
.org/info/digests/tugboat/ushyphex.tex. (It’s
created by Werner Lemberg’s scripts, available in
the subdirectory hyphenex.)

Like the full list, this update is in two parts:
English words, and names and non-English words
(including transliterations from Cyrillic and other
non-Latin scripts) that occur in English texts.

Thanks to all who have submitted entries to
the list. Here is a short reminder of the relevant
idiosyncrasies of TEX’s hyphenation. Hyphens will
not be inserted before the number of letters specified
by \lefthyphenmin, nor after the number of letters
specified by \righthyphenmin. For U.S. English,
\lefthyphenmin=2 and \righthyphenmin=3; thus
no word shorter than five letters will be hyphenated.
(For the details, see The TEXbook, page 454.) This
particular rule is violated in some of the words
listed; however, if a word is hyphenated correctly by
TEX except for “missing” hyphens at the beginning
or end, it has not been included here.

Some other permissible hyphens have been
omitted for reasons of style or clarity. While this is
at least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more break-point in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.

One other warning: Some words can be more
than one part of speech, depending on context, and
have different hyphenations; for example, ‘analyses’
can be either a verb or a plural noun. If such a word
appears in this list, hyphens are shown only for the
portions of the word that would be hyphenated in
the same way regardless of usage.

The reference used to check these hyphenations
is Webster’s Third New International Dictionary,
Unabridged.

TUGDboat, Volume 31 (2010), No. 3

Hyphenation for languages
other than English

Patterns now exist for many languages other than
English, including languages using accented alpha-
bets. CTAN holds an extensive collection of pat-
terns: see http://mirror.ctan.org/language/
hyphenation and its subdirectories. =~ A group
of volunteers led by Mojca Miklavec and Arthur
Reutenauer have created a comprehensive package

of hyphenation patterns, called hyph-utf8;
http://tug.org/tex-hyphen.

The List — English words

con-structible
ep-stopdf
er-gonomic
er-gonom-i-cally
ethy-lamine
ethy-late
ethynyl
ethyny-la-tion
fron-tend
in-pu-tenc
in-ter-vie-wee
leuko-cyte
metaform
metham-phetamine
methy-lam-mo-nium
methy-late
methy-la-tion
methy-lene
minesweeper
nodelist

nonzero
ono-matopoeia
ono-matopo-etic
parametriza-tion
prokary-ote
prokary-otic
prostyle
provirus
showhy-phens

tetra-buty-lam-mo-nium

trans-parency(ies)

con-struc-ti-ble
eps-to-pdf
er-go-nom-ic
er-go-nom-i-cally
eth-yl-am-ine
eth-yl-ate

ethy-nyl
ethy-nyl-a-tion
front-end

input-enc
in-ter-view-ee
leu-ko-cyte
meta-form
meth-am-phet-a-mine
meth-yl-am-mo-nium
meth-yl-ate
meth-yl-a-tion
meth-yl-ene
mine-sweeper
node-list

non-zero
ono-mat-o-poe-ia
ono-mat-o-po-et-ic
pa-ram-e-tri-za-tion
pro-kary-ote
pro-kary-ot-ic
pro-style

pro-virus
\show-hy-phens
tetra-butyl-ammo-nium
trans-par-en-cy (ies)

Names and non-English words

used in English text

Dorch-ester
Hoek-wa-ter
Im-ageMag-ick
JavaScript
Minkowski
Pythago-ras
Pythagorean
Schwei-d-nitz
Shored-itch
Tolch-ester
Vidi-assov

Dor-ches-ter
Hoek-water
Image-Magick
Java-Script
Min-kow-ski
Py-thag-o-ras
Py-thag-o-re-an
Schweid-nitz
Shore-ditch
Tol-ches-ter
Vid-ias-sov

TUGDboat, Volume 31 (2010), No. 3

A story of kpfonts: Reaching the limits of NFSS
Christophe Caignaert

Like a bird on the wire,
Like a drunk in a midnight choir,
I have tried, in my way, to be free.

LeoNARD CoOHEN, Bird on the wire

One day, some years ago, I was with DANIEL
Friro, the author of the lettrine package and the
French module of babel.

He reminded me that IXTEX is community soft-
ware, and, if I don’t find what I want, I have to write
it! Without him, probably, kpfonts wouldn't exist.

Greetings to him. ..

1 Before kpfonts
1.1 I'm not a...

I have been a mathematics teacher in a high school
in the north of France since 1980. My students are
19 or 20. I have been interested in computer science
since the middle of the seventies.

I’'m not a typographer and I'm not a TgX, or
IXTEX, expert. I'm unable to program in the TEX lan-
guage! Nothing fated me to become a font designer
and package author...nothing at all!

1.2 First steps with computer typesetting

The first computer I bought was an Apple ITe. Then
I began writing some papers with the Apple Writer!
software, obviously text and not math documents. ..

Then I bought an HP personal computer with
an 8 Mhz 80286 processor! I began writing some
mathematics using ChiWriter,? shareware at that
time.

Some years later, I used a student release of
Scientific Word, Scientific Workplace,3 release 2.5.
It was a private IXTEX editor with a limited wysiwyg
formula editor. This was my first typesetting with
good output. Scientific Word was good, but not
very versatile, and month after month, I reached its
limits. It was possible to insert any IATEX command,
but if it was unknown to Sw, it would appear on
the screen as a grey box. Some basic commands
like \sum\1limits in math resulted in a grey box for
\limits. Because I'm never fully satisfied, I got
more and more grey boxes in my documents with
more and more (IA)TEX commands not interpreted

Dhttp://en.wikipedia.org/wiki/Apple_Writer
2 http://en.wikipedia.org/wiki/ChiWriter
3 http://en.wikipedia.org/wiki/Scientific_WorkPlace

161

on screen. Therefore, I decided to forget it and I'm
now using pdfTEX.

Perhaps it seems foolish to you, but during
these years I was working alone to discover this soft-
ware. In my high school, most math teachers are,
still at this moment, writing math by hand; some
use a too-well-known word processor, and I'm alone
in looking for better output quality... with IXTEX.

And you know it’s not easy to discover KX
alone!

1.3 First interest in fonts

I have been interested in typography for a long time
and I read that pdfTEX can use TrueType fonts. I fol-
lowed the article of DamIr RakiTyansky* to install
my first ttf fonts.

Thus, I discovered ligatures, kerning, metrics,
virtual fonts: pl, vpl, tfm, vf, fd, map and sty files
of the IATEX font world, and also ttf, pfb, afm files
coming from typography.

Because some users, mainly Windows users,
never use a console or command line, I wrote a new
paper, in French® and in English,6 about installing
ttf fonts for pdfTEX and step-by-step instructions
for those using TEXnicCenter. In addition, I built
the necessary support files for many Windows ttf
fonts and free ttf fonts available from a web site.”

[also made an artistic document for a local exhi-
bition combining computer handwriting fonts with
the meaning of the message, perhaps unfortunately
for you, in French, called Rendez-Vous.®

Doing that work, I also discovered the font edi-
tor, fontforge, but also some other font editors: one
of my friends works in typography and I used his
professional computer during weekends.

I obviously discovered Bezier curves and the
design of non-Metafont glyphs...

1.4 First steps of the future kpfonts

My first font was called Christophe; it was my first
attempt to alter Palladio (the URW Palatino) as a
challenge ... for myself!

From the beginning, the principles were:

* very basic design, with a minimum number of
Bezier curves,

* dynamic design with a marked diagonal force
line from WSW to ENE.

4 http://www.radamir.com/tex/ttf-tex.htm

5http://c.caignaert.free.fr/Installer-Police-ttf.
pdf

S http://c.caignaert.free.fr/Install-ttf-Font.pdf

7 http://c.caignaert.free.fr/ttf.html,
http://c.caignaert.free.fr/ttf-english.html

8 http://c.caignaert.free.fr/Rendez-Vous.pdf

A story of kpfonts: Reaching the limits of NFSS

162

We can see here the roman upright a of both
kpfonts and some other font packages, and the ap-
proximate corresponding set of Bezier curves.

’ Kpfonts ‘ CM ‘ Palatino ‘ Utopia ‘ Times ‘

daddd

C

Next, you can see here the force line (sharp cut)
and its symmetrical echo in kpfonts:

L

2 The development

I saw a beggar leaning on his wooden crutch,
he said to me, “You must not ask for so much.”

And a pretty woman leaning in her darkened door,
she cried to me, “Hey, why not ask for more?”

LeoNARD COHEN, Bird on the wire

2.1 Beginnings of the math set fonts

My first tests with math fonts was to use URW Gara-
mond with the math symbols of pxfonts, the package
I use at this moment in my documents. I called this
gxfonts. ..

I discovered the global organisation of math
fonts, with the main

* operators, like 0123 +— = I'A, and math opera-
tors like “sin”,

o [etters like abc afy,

» symbols, the basic symbols, like = - = 3,

* largesymbols, the multi-size basic symbols, like

£y J|

and a lot of other things like AMS symbols, etc.

Christophe Caignaert

TUGboat, Volume 31 (2010), No. 3

I also learned about the math alphabets, math
delimiters. ..

I was impressed by the special tricks of DoNaLD
KnuTH as

* long arrows made with minus sign and a regu-
lar arrow: ‘=" and ‘-’ gives ‘—/,

* long double arrows with equal sign and regular
double arrow: ‘=" and ‘=’ give ‘=,

¢ the use of the fake width and italic correction
in math mode, width for subscript and italic
correction for superscript,

* the famous skewchar, fake kerning to create the
math accents: 4.

It’s like building the Golden Gate Bridge with
three oz of spaghetti...

When the gxfonts package was in p-release, I
sent a note to MicHeL Bovani, the author of the
fourier package, asking him his opinion.

Many thanks to him: he told me, with chosen
words, it was very bad! And, even better, he told me
why! For instance, the roman and greek letters of
gxfonts were like cats and dogs. ..

Thus, I saw, at that moment, I had designed the
Greek letters according to the design of the roman
letters of Christophe. Even though the two projects
were not linked at first, it was not so surprising: the
same author and the same mood for design. ..

Therefore, it was obvious I had to combine
these. ..

2.2 The kpfonts package
2.2.1 The 1.0 release

Then I decided to make a full package of fonts, i.e.
needing only one \usepackage to run.

It was 2005/04/20, my fiftieth birthday. Often,
many people think that your life is behind you at 50!
And perhaps I had to prove I was not a has-been!

From that moment I decided to write a compre-
hensive package including

* the roman, sans serif and teletype fonts,

¢ all the symbols including AMS symbols, “not”
symbols, et al.,

* calligraphic and script alphabets,

* a frenchstyle math option needing upright up-
percase and greek letters .

At that time, I had:

* the normal and bold text fonts including small
caps, from Christophe,

* the slanted greek letters, from gxfonts,
and my todo list was cluttered:
¢ the sans-serif and teletype fonts,

TUGboat, Volume 31 (2010), No. 3

* the textcomp symbols,
* the symbols, large symbols, AMS symbols,

* the upright greeks, calligraphic, script, full
mathbb and fraktur alphabets,

* reading the fontinst doc file carefully,

* fixing the font’s math dimensions: I keep the
math font dimensions as Donarp Knuta had
them, except for the position of a subscript with
no superscript, lower in kpfonts than CM.

I didn’t realize the great deal of work needed
at that time. The next two years were the busiest
of the story. If you look at the readme. txt file, you
can find:

Release 1.0 2007/04/20

It was my 52nd birthday. For many years, the
first new set of fonts designed for IATEX. I was very
anxious about the feedback.

Since the beginning, kpfonts has supported the
frenchstyle option, with upright uppercase roman
and lowercase greek letters in math mode. Even if,
at that time, I had no idea about the future of kpfonts,
from the beginning, I thought I would propose some
options to customize the typesetting.

2.2.2 Old style options

At that time, my birthday was obviously very impor-
tant, because the next line of readme. txt is

Release 1.1 2007/05/04 New ‘oldstyle’
option, and \sqrt bug fixed.

only fifteen days later!

I had built the oldstyle option during the two
previous years and it was almost ready when I up-
loaded the 1.0 release...

In fact, I think it is a good thing to build a pack-
age but a better thing to build a different package. A
large set of options to customize the typesetting will
make the difference. This appeared little by little
during the work, like an obvious element.

In France, we have a well-known collection of
books called La Pleiade using a Garamond font set
with the ¢t and $7 old ligatures and a long tail Q_.

I decided, because I liked them, to offer these
possibilities as an option, with oldstyle numbers as
the default. Later, asked by German users, I built
an oldstylenums option without the extra ligatures
(in Release 2.1 2008/03/21).

Here you can see the design of the ligature
forms compared to the standard forms, using the
light option:

163

’ upright ‘ oldstyle H upright ‘ oldstyle

Ct Ct st

’ italic italic

Ct CI St

The font dimensions of the superscripts are al-
tered with oldstyle numbers in math mode taking
their design into account.

Because the T1 encoding is full, I had to find
two slots for the new ¢t and $ old ligatures. I chose
to use the slots of two Icelandic letters. I had noth-
ing against the Icelandic people or their language,
but I had to make a decision... Obviously, kpfonts
sends a warning in this case.

‘ oldstyle H ‘ oldstyle

2.3 The kpfonts package, release 2

It was the first major evolution of the package:
Release 2.0 2008/01/01.

The new f ligatures, light fonts and very old
style options appeared with this release. You can
see that the second part of 2007 was a very intensive
work period!

It was a new main number because, for me, the
light option is the major alteration of kpfonts.

At that time, I thought, once again, that kpfonts
was finished, except for the inevitable bug correc-
tions. ..

2.3.1

In my opinion, too-bold fonts are in bad taste. Using
the facilities of the font editors and a good deal of
work, I built lighter fonts with the same metrics,
corresponding to the light option.

It was necessary to design again the mathemati-
cal symbols: when you have a line that is .7 ptin 10
pt, the light font would be .5 pt.

You can see below the normal weight and light,
upright and italic a:

Light fonts

upright light H italic light

What'’s more, it’s not insignificant to save up to
20% toner when printing. ..

A story of kpfonts: Reaching the limits of NFSS

164

2.3.2 New f ligatures

A ligature is the way to combine two characters into
one. The most common ligatures with TgX are the f
ligatures: ff, fi, fl, ffi and ffl.

There are different ways to design them. See
examples below with the fi ligature:

URW

Garamond | Kpfonts 1.x | Kpfonts | Palladio
o {

URW

Garamond | Kpfonts 1.x | Kpfonts | Palladio
[o

At first, I made a bad choice, like a bridge, as
with Garamond for instance. It was a bad choice
relative to the design of the f of my fonts: the effect
was not good because of the short terminal of its
ascender. Thus, I decided to change it. It was neces-
sary to change the design of the ascenders of these
ligatures.

Note the old and new fi of kpfonts and the al-
most fake ligature in upright URW Palladio used by
the palatino, pxfonts, and mathpazo packages.

2.3.3 Very old style options

In very old documents, instead of the round s, we
find a long [, except at the end of the word. I
couldn’t find any package to typeset text and math
with the long /. Then, I decided to built the neces-
sary files and to offer these possibilities. It was done
with Release 2.1 2008/03/21.

For instance, here is st using italic shape and
light fonts; you can see I also installed new ligatures:

’ Default ‘ Old style | Very old style ‘

St

At this moment, the idea to make a package with a
large set of options to customize the typesetting was
definitely established.

Christophe Caignaert

TUGboat, Volume 31 (2010), No. 3

2.3.4 Large small capitals

It’s interesting in a font package to have real small
capitals and not fakes... From the beginning, I de-
signed some small caps. In fact, I designed very
small small caps, approximately as high as an x. I
like it because they are different!

It’s also not usual because in many cases, the
small caps are fakes, scaled uppercase indeed. Don’t
forget that a fake seems not too bad if the scaling
is not too strong, i.e. if the small caps are not too
small! This is another of the reasons why small caps
are usually rather large.

I decided then to work on a large small caps
set of fonts. Indeed, the font editors are able to
“blend” some fonts. Blending the existing small
small caps and usual uppercase letters gives a good
design to begin the work. It was done in Release
2.2 2008/05/21, shown here using the light option.

large

lowercase || small cap | small cap || uppercase

D D

Thus, kpfonts has two sizes of small caps. It’s
very rare and even the very extensive OpenType font
file doesn’t allow for it!

As in the present article, I usually use small
small caps for people’s names and large small caps
for acronyms.

2.3.5 The lowercase g record

Usually, with a given font set, you get four designs
for a letter: upright and italic, normal and bold.
If there are true small caps, you get also them in
normal and bold, six designs in this case.

For the lowercase g in kpfonts, you get forty
roman designs, and then more with the sans-serif
and teletype fonts! Perhaps a record, even though
there is no italic small caps g. Let’s start with the
default designs:

| upright bold | italic bold

TUGboat, Volume 31 (2010), No. 3

Light:

upright | bold [italic bold
Small caps:

default | bold | large bold

e,

Q

®,
S,

Light small caps:

default

bold ||

large

bold

@,

Q

®.
Q

Long tail small caps:

’ default ‘

bold

H

large

bold

©

Q_

©
e

Long tail light small caps:

| default |

bold

H

large

|

bold

©

Q_

©
©

We get all these glyphs with the lowercase 4!

2.3.6 No f ligatures

The option nofligatures appeared with Release 2.3
2008/09/09, requested by users who didn’t like the

ligatures.

With some packages, or modern TEX-based en-
gines, you can disable these ligatures but the result

can be ugly:

165
Times Utopia Kpfonts | Kpfonts
f{}i f{}i f{}i nofligatures
{ ([o [" []
Times Utopia Kpfonts | Kpfonts
f{}i f{}i f{}i nofligatures
° Y [J [J

And, don't forget it’s worse at normal size! With
upright Times, f and 7 seem incompatible, like cats
and dogs, and with Utopia, the ascender of the f and
the dot of the i are too close and don't fit together.

You can see that the result is not too bad with
my fonts, but, I preferred to shorten the ascender of
the f letter in this case. In my opinion, the look is
better at normal size!

2.3.7 Slanted small caps

In the IATEX new font selection scheme (NFSS), small-
caps and slanted (or italic) are shapes. The result is
the impossibility of getting slanted small caps.

Installing slanted small caps, a new shape scs/,
requires only some lines in the installation file used
by fontinst program, and also some lines in the sty
file. Here’s an example:

Everybody, including TED SLANTED, can see it’s
better than Jack UprIGHT does usually!

Slanted small caps also appeared with Release
2.3 2008/09/09. Later, a new option easyscs! allows
you to fit together \textsc and \textsl. It’s an
option because, if you use \textsc{\textsl{...}}
with other fonts, you get some edge effect. This op-
tion appeared with Release 3.3 2010/04/20, and
sent a warning to the console. This point will be
discussed in a later section.

2.3.8 Math fonts during this time

For some time now, we have been speaking about
text fonts but math typesetting is also going on!

First, the oldstylemath, veryoldstylemath and old-
stylenumsmath appeared at the same time as the text
equivalent.

As of Release 2.2, you can use narrowiints op-
tion, For \displaystyle\iiint dx\,dy\,dz, let’s
see the output:

A story of kpfonts: Reaching the limits of NFSS

166

’ default ‘ narrowiints ‘

dxdydz dxdydz

And with Release 2.3, the partialup option
is added. For \dfrac{\partial z}{\partial x},
the output is:

’ default ‘ partialup ‘

dz | 0z

dx | dx

2.4 The 3.0 release: new text kerning and
math accents

2.4.1 New kerning

There were some inherited defaults in kpfonts, and,
even at that time, we could see that the main prob-
lem was the kernings. One of the first lines of the
Readnme file is
Release 1.11 2007/06/03 Correct bad
kernings of “quote’ symbols

It proves that, from the beginning, the kerning
was a problem. Perhaps it’s the biggest challenge
for a beginner! The kerning by pairs is the way to
tighten or spread two characters depending on their
exact design. For instance, see Ye with and without
kerning, here using the light option:

’ with ‘ without ‘

Ye| Ye

The font editors offer a lot of possibilities. One
of these is automatic kerning. Usually you have to
choose:

* the left and right characters to kern,

* the required space between two characters,

* the technique: minimum distance, average dis-
tance, average weight,

* the exceptions: numerals, lowercase-uppercase:
in ‘IXTEX’, for instance, there is a kerning T-e
but no kerning a-T. ..

* the equivalents, 0 and 6 have often the same
kerning...

These programs do their best but are regret-
tably not very good. And a beginner like me was too
confident in their results. Even if, at the time, I cor-
rected all the generated kernings by hand, I was too

Christophe Caignaert

TUGboat, Volume 31 (2010), No. 3

confident about the basic results of the automatic
kernings. ..

Some users protest rightly about incoherent
kerning. I asked on fctt, the French version of ctt,
and everybody thought new kernings would be a
good thing although it can change the typesetting. I
decided to work on it. ..

At the same time, subscript and superscript
position, i.e. width and italic correction, of all the
math alphabets were revisited. It’s a very long hard
job, with a large set of tests and much reinstallation
of kpfonts. During these six months, I produced,
with fontinst and batch files, at least 200 000 files. ..

It was available on CTAN as of Release 3.0
2009/03/03, and I thought now the work was not
too far from being good fonts. Therefore, the new
main number version.

See for instance the Av kerning in upright shape
and To in italic with the 1.xx or 2.xx release versus
the same with 3.xx (default fonts here).

’ before 3.0 ‘ 3.0 and after ‘ no kerning ‘

Av AV AV

’ before 3.0 3 0 and after no kermng

To To To

Scaled this much, the first may not appear to
spread, but it’s the case at normal size. That’s the
reason why the first kernings are too strong. Then,
I was working on a screen... Thus I bought a laser
printer and work now with printed tests!

2.4.2 New math accents and widermath option

Also with the 3.0 release, I installed new math ac-
cents such as \widearc, as in some other packages.
Here are some examples:

’ \widearc ‘ \widearcarrow ‘
—— ————
MoMq, MyM;

’ \wideparen ‘ \widering ‘

MyMy MyM;

TUGboat, Volume 31 (2010), No. 3

You get also the new option widermath. The
object is to provides slightly wider math typesetting,
particularly for users working with 9 or 10 pt as
the basic font size. Small sizes need proportionally
bigger spaces...

2.4.3 amsmath options

Release 3.1 2009/05/20 offers the possibility to
use the options of amsmath as options of kpfonts.
This affects the basic and AMS math fonts and also
the special math fonts of kpfonts. ..

These too-little-known options affect the de-
fault position of subscript in integral or summation
symbols. To get more information, see the documen-
tation of the AMS or kpfonts packages.

2.4.4 Sans-serif math versions

The last major evolution kpfonts was Release 3.2
2010/03/03 allowing math typesetting using sans-
serif fonts. You can do it with a new option, sfmath,
or with the new math versions sf and boldsf. Ob-
viously, for full support, you also get both rm and
boldrm math versions.

Some default symbols are serifed, like \sum;
thus they have a new design, as you can see:

’ roman ‘ sans-serif

n n n n

)3

p:() p:O

p=0 p=0

In addition, I designed some sans-serif greek letters,
uppercase and lowercase, slanted and upright:

’ roman ‘ sans-serif ‘

aBapl WIW | aBapl WIW

In case you are getting slightly sleepy reading
this, let me explain exactly what it means. For in-
stance, when you type \alpha, depending on the
options and math version, you can get any of 12
different designs: normal or bold (x2); upright or
slanted (x2); default or light roman; or sans-serif
(x3)!

2.5 Special tricks
In fact, I don’t like to have special tricks in a package,
but I still use this possibility sometimes!

* To get the veryoldstyle s, usually at the end of a
word, I use a classic fake ligature s=.

167

* narrowiints
In the kpfonts.sty file, we find this code:
\re@DeclareMathSymbol{\iintop}{\mathop}
{largesymbolsA}{\narrowiints33}
where

- \narrowiints is 1 if the narrowiints
option is selected, empty if not, and,

— the default \iint symbol is decimal 33
and the narrower one is decimal 133.

* Long tail Q is called:

— Qoldstyle in the afm files and the etx files
used by fontinst and,

- Qin the pfb and enc files.

Thus, in pdf and ps output, it’s Q and the
search functions of Acroread and Ghostscript
can find it in any case. ..

I use the same trick for the veryoldstyle long s.

3 Some examples
3.1 Text

I use the example of testfont.tex and the ITEX
Companion, slightly altered when using the veryold-
style option.

3.1.1 Default
For the price of £45, almost anything can be
found floating in fields. {THE DAZED BROWN
FOX QUICKLY GAVE 12345-67890 JUMPS! — ;But
aren’t Kafka’s Schloff and Zsop’s (Euvres often
naive vis-a-vis the demonic pheenix’s official role
in fluffy soufflés?
For the price of £45, almost anything can be found
floating in fields. [THE DAZED BROWN FOX
QUICKLY GAVE 12345-67890 JUMPS! — ;But
aren’t Kafka’s SchlofS and ZEsop’s (Euvres often
naive vis-d-vis the demonic pheenix’s official role

in fluffy soufflés?

3.1.2 Options oldstylenums and light
or textlight

For the price of £45, almost anything can be
found floating in fields. {THE DAZED BROWN
FOX QUICKLY GAVE 12345-67890 JUMPS! — ; But
aren’t Kafka’s Schloff and Zsop’s (Euvres often
naive vis-a-vis the deemonic pheenix’s official role
in fluffy soufflés?
For the price of £45, almost anything can be found
floating in fields. [THE DAZED BROWN FOX
QUICKLY GAVE 12345-67890 JUMPS! — ;But
aren’t Kafka’s SchlofS and /Esop’s (Euvres often
naive vis-d-vis the demonic pheenix’s official réle

in fluffy soufflés?

A story of kpfonts: Reaching the limits of NFSS

168

3.1.3 Option nofligatures

For the price of £45, almost anything can be
found floating in fields. ;THE DAZED BROWN
FOX QUICKLY GAVE 12345-67890 JUMPS! — ;But
aren’t Kafka’s Schlof and Zsop’s (Euvres often
naive vis-a-vis the demonic phoenix’s official role
in fluffy soufflés?
For the price of £45, almost anything can be found
floating in fields. [THE DAZED BROWN FOX
QUICKLY GAVE 12345-67890 JUMPS! — ;But
aren’t Kafka’s Schlof8 and Zsop’s Euvres often
naive vis-d-vis the demonic pheenix’s official réle
in fluffy soufflés?
3.1.4 Option oldstyle

For the price of £45, almost anything can be found
floating in fields. jTHE DAZED BROWN FOX
QUICKLY GAVE 12345-67890 JUMPS! — ;But
aren’t Kafka’s Schlof and Zsop’s (Euvres often
naive vis-a-vis the deemonic phcenix’s official role
in fluffy soufflés?
For the price of £45, almo$t anything can be found
floating in fields. [THE DAZED BROWN FOX
QUICKLY GAVE 12345-67890 JUMPS! — ;But
aren’t Kafka’s Schlof8 and Zsop’s Euvres often
naive vis-a-vis the demonic pheenix’s official réle
in fluffy soufflés?
3.1.5 Option veryoldstyle and light or textlight

For the price of £45, almoft anything can be found
floating in fields. {THE DAZED BROWN FOX
QUICKLY GAVE 12345-67890 JUMPS! — ;But
aren’'t Kafka’s Schlofs and Zfop’s (Euvres often
naive vif-a-vis the deemonic phcenix’s official role
in fluffy foufflés?
For the price of £45, almoft anything can be found
floating in fields. [THE DAZED BROWN FOX
QUICKLY GAVE 12345-67890 JUMPS! — ;But
aren’t Kafka’s Schloff and Zfop’s (Euvres often
naive vif-a-vis the demonic pheenix’s official réle
in fluffy foufflés?
3.1.6 Quiz

Exercise: find the minimal set of package options
that are used in each of these cases. Except when us-
ing the veryoldstyle option, the source file is always
the same, sometimes upright, sometimes italic.
1. A.QuEER fays: making 29 active charallers if def-
initely nafty!
2. A.QUEER says: making 29 active characters is
definitely nasty!
3. A.QUEER says: making 29 active charalters is
definitely nasty!

Christophe Caignaert

TUGboat, Volume 31 (2010), No. 3

4. A.QuEeer says: making 29 active characters is
definitely nasty!
5. A.Queer says: making 29 active characters is
definitely nasty!
6. A.QUEER says: making 29 active characters is
definitely nasty!
7. A.QUEER says: making 29 active characters is
definitely nasty!
8. A.QuUEER says: making 29 active characters is
definitely nasty!
9. A.QUEER says: making 29 active characters is
definitely nasty!
10. A.QUEER says: making 29 active characters is
definitely nasty!
Read the solution at the end of the article!
If you were very attentive, you can get 10 points!

3.2 Math

The figures on the following pages show math sam-
ples. These also use an example from the KTEX
Companion. ..

3.3 This document

This article uses only the textlight option. Obviously,
in some parts, the options described are simulated
using \fontfamily...

In the math examples, I use two special tricks
to get the narrow \iiint and the upright \partial
symbol.

In both the text and math examples, the output
is scaled to the available line length.

Personal names are in default small caps, and
acronyms are in large small caps.

4 The limits of NFSS
4.1 Non-existing features

Some features of kpfonts don’t exist in the new font
selection scheme:
* Two sizes of small caps:

— The commands \textothersc{...} and

\otherscshape allow you to use both sizes.
They are often used in this document.

— The option largesmallcaps changes the de-
fault small caps size. Then, you can use
standard commands for large small caps!

* slanted small caps:

— The following commands allow you to use
the slanted small capitals:
\textscsl{...}

\scslshape
\textotherscsl{...}
\otherscslshape

TUGboat, Volume 31 (2010), No. 3

169

1 Sample page of mathematical typesetting

First some large operators both in text: fﬂf(x, v,z)dxdydzand]_[yer6 8(27,); and
Q

also on display:

, ol Il wes
H)ﬂ flwspadudsdyiz<) f (max{lw2+x2|' v+ [xeyl })
t=9

e

a V1_¢2
Q<0 1-t

(1)

t=a

For x in the open interval |-1,1[the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [-1,1].

(1—x)_k:1+i(—1)j{l;}xj for k € IN; k = 0. (2)

=1

Figure 1: Default

1 Sample page of mathematical typesetting

First some large operators both in text: JHf(x, v,z)dxdydzand]_[yer5 8()?),); and

Q
also on display:

||| ||| ||”W€9Z||})
w,x,v,z)dwdxd dzsgg ’(max{ ; ;
,(Hjﬂ pajdwdrdydzs @ S 2 3 2 2] eyl

[)™ W
éQLzJQ f [—Tﬁ]

t=a

For x in the open interval]-1,1[the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [-1,1].

o

(1—x)—k:1+Z(—1)f{’]‘,}xf for ke N; k = 0. (2)

=1

Figure 2: Options lightmath and narrowiints

A story of kpfonts: Reaching the limits of NFSS

170 TUGboat, Volume 31 (2010), No. 3

1 Sample page of mathematical typesetting

First some large operators both in text: Hff(x, y,z)dxdydzand]—[yer6 8()~(y); and
Q

also on display:

, ol . 1l fwecl
Eﬂ fuspadudsdydz < f (o)
t=9

)

a V1_¢2
Q<0 1-t

(1)

f=a

For x in the open interval |-1, 1] the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [-1,1].

(1—x)_k:1+i(—1)j{l;}xj for k € N; k = 0. (2)

=1

Figure 3: Options nofligatures and uprightgreeks

1 Sample page of mathematical typesetting

First some large operators both in text: jﬂf(x, v,z)dxdydz and]_[yer5 &(}?y); and
Q

also on display:

) l|wl| 1Kl IIWEBZII})
w,x,v,z)dwdxdydz < max ; ;
Qﬂ flw,xyz)dwdxdy 9%Qf ({|w2+x2| 2+ 27 [x@yl

fam)™ W
éQLzJQ f [—Tﬂ]

t=«a

For x in the open interval |-1,1[the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [-1,1].

o

(1—x)—k:1+Z(—1)f{’]‘,}xf for ke N; k = 0. (2)

=1

Figure 4: Options lightmath and partialup

Christophe Caignaert

TUGboat, Volume 31 (2010), No. 3 171

1 Sample page of mathematical typesetting

First some large operators both in text: Hff(x, v,z)dxdydzand]_[?,er5 8()?7/); and
Q

also on display:

) lwll .zl llwez|
ffjjf(w,x,y,z)dwdxdy dz < 9gan (max{|w2 2 222 [x @yl })
Q
=9

V1 -2
Qc0 1-t

(1)

=«

For x in the open interval |-1,1[the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [-1,1].

(S

(1—x)_k:1+Z(—1)j{l;}xj for k € N; k = 0. (2)

=1

Figure 5: Option sfmathbb

1 Sample page of mathematical typesetting

First some large operators both in text: ij(x, v,z)dxdydz and HVEFE 8()77,);
Q

and also on display:

) l|wl| ||| ||w692||})
w,x,v,z)dwdxdydz < max ; ;
Qﬂf‘ P2} dwdxdy 9%Qf({|w2+x2| v+ 2] @yl

(fom\)
éqgtgjf[‘l_ﬁ t=a

(1)

For x in the open interval |1, 1] the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [-1, 1].

> (K)Y .
—)F =1+) (0§ forke Nk = o.
(1 —x) 1+]-:1(1) {j}x or k € %0 (2)

Figure 6: Options lightmath, fulloldstylenums and widermath

A story of kpfonts: Reaching the limits of NFSS

172 TUGboat, Volume 31 (2010), No.

1 Sample page of mathematical typesetting

First some large operators both in text: Hf f(x,y,z)dxdy dz and Hyerg 8()~<y);
Q

and also on display:

, Iwll .zl weZ]
J{fff(w,x,y,z)dwdxdydzséQf (max{|W2+X2|,|y2+22|, ||x€By||})
[\ ||~ W
Sl
1-1t2

QeQ
For x in the open interval |-1, 1] the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [-1,1].

QA

t=a

(¢]

(1-x)k= 1+Z(—1)j{lj}xj for k€ IN; k= 0. (2)

=1

Figure 7: Option sfmath

1 Sample page of mathematical typesetting

First some large operators both in text: ﬂf f(x,y,z)dxdydzand I_Iyerg 8()~<y); and

Q
also on display:

JH]-f(W,X,y,z)dwdxdydzsgg f’(max{ !w” » 2||Z|| i ;||WEBZ||})
3 90 w2+ x2]" |y? + 22| |[x® yll

s |4]F Jom\ = W
NQ@Q Vi-t2

t=a

For x in the open interval]-1,1[the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [-1,1].

o0

(1—x)_k:1+Z(—l)j{Ij<}xj for k € N; k = 0. (2)

j=1

Figure 8: Options sfmath, narrowiints, uprightgreeks and partialup

Christophe Caignaert

TUGboat, Volume 31 (2010), No. 3

— You can also use the easyscs/ option or the
slantsc package to get slanted small caps as
expected: \textsc{\textsl{...}}. But,
you have to redefine these commands and
the result can be disappointing!

\documentclass{minimal}
\usepackage{palatino}
\usepackage{slantsc}
\begin{document}
\textsl{\textsc{Hello}}
\end{document}

gives you 2 warnings. .. and the output is
an upright “Hello” in palatino! This is the
reason that the easyscs! option of kpfonts
gives an explicit warning.

— The option largesmallcaps also affects the
default slanted small caps size.

* light variant fonts:

— Because of the edge effects described be-
low, there are no commands to switch be-
tween default and light fonts.

For instance, you have to redefine com-
mands like \textit: therefore, you want
the italic of the actual font, not the default!

— But the option rmx allows you to use these
fonts without the usual

\fontfamily{...}\selectfont!

The corresponding table:

’ option ‘ weight H rmx ‘
light m 1
m m
light b/bx || sb/sbx
b/bx b/bx

4.2 Exponential number of files
4.2.1

In most cases, when you have a font family, like
URW Garamond, you get basically 4 fonts:

Usual case

* upright or italic, and,
e normal or bold.
Thus

* 4 pairs pfb/afm, the design of characters and
the metrics, and/or,
* 4 ttf or otf files including design and metrics.

(IA)TEX doesn’t need the design of the characters,
they need only the metrics, the tfm files to build the
dvi. It’s one of the reasons why dvi files are small.

A dvi viewer or dvips (or equivalent) or pdfTEX
does need the actual characters to produce the final
document, of course.

173

We describe briefly the chain of events to find
the good metrics. Now, imagine you are TEX (it’s
easy if you try):

* You have an active family and encoding, for
instance jkp and T1, i.e. default kpfonts family
and Cork encoding,

* you read the t1jkp.fd file, for font definitions,
* you have an active shape and weight, for in-
stance it and n, i.e. italic and normal weight,

* you read the line:
\DeclareFontShape{T1}{jkp}{m}{it}

{<-> jkpmit8t}{}
in the fd file. jkpmit8t is the needed tfm file,
including metrics, ligatures and kerning.

Usual cases, like Garamond, require less than
50 files for an OT1 and T1 installation...

4.2.2 kpfonts case

For “hackers”, special use or curiosity, look at the
rules to build the corresponding family names:

roman jkp[1l,x][k][f][osn,o0s,vos]
sans serif | jkpss[k][f][osn,os,vos]
teletype jkptt[osn,os,vos]
with the corresponding options:
1, x light, rmx
k largesmallcaps
f nofligatures
osn, os, vos | oldstylenums, oldstyle, veryoldstyle

For the roman fonts, because we can choose
between OT1 and T1 encoding, we have 72 families,
excluding the TS1 ones for textcomp... The total
number of families is 187 in the 3.12 release!

Most of the roman families have 15 tfm metrics:

 upright, italic, small caps, slanted,
slanted small caps,
¢ ecach in normal, bold and bold extended...

But each tfm corresponds here to a vf, virtual
font, file because there is no direct link between
these tfm files and a pfb file!

In the 3.12 release, we get

* 668 virtual font, vf, files,
¢ 858 tex font metric, tfm, files.

The kpfonts TDS tree has a total of 1,875 files. ..

I'm on my own and it’s impossible for me to
be ensure with any probability that there is no bug!
Indeed, writing this paper, I found one bug: light
and veryoldstyle medium weight font were not light
but the default!

A story of kpfonts: Reaching the limits of NFSS

174

4.2.3 About a new option

A new option, long tail Q without special ligatures
ct and st, but with old style numbers or not, was
requested by a user. This would mean 240 more tfin
files, 240 more vf files and 24 more fd files, this just
for T1 encoding and roman fonts.

For sans serif fonts, it’s 96 tfm, 96 vf and 8 fd
new files. No action and no more files for teletype
fonts!

The number required by the OT1 encoding is
the same, for a complete sum of 1,408 new files...
Increasing the total number of kpfonts’ files about
75 %!

You see here the explicit exponential effect!

In fact, this option would not be hard to install
(2 new etx files, the encoding files for fontinst, and
some new lines in the installation file), but I don’t
agree with the request because there are already
commands \othertailQ and \othertailscqto do
the work. ..

4.2.4 Last way to be free

And if you want some options to choose freely:
* classic IXTEX f ligatures or not,
* (¢t ligature or not,
* §tligature or not,
* oldstyle or lining numbers,
* round s or long
* long tail Q_ or classic Q,

if I'm not wrong it’s about 20,000 files more. ..

The object of kpfonts is not to increase indefi-
nitely the number of files on your hard disk!

The object of kpfonts is not to be in the Guinness
book!

I don’t think it’s sensible to exceed 2,000 files
in a package, even if it’s possible!

To go further, to be free, I think somebody has
to build some otf fonts using their advanced possi-
bilities and has to use it running X4TEX or LuaTgX,
but that’s another challenge. ..

Obviously, otf fonts will solve the above fea-
tures problems without an exponential number of
files, but won't easily solve these:

* small or large small caps;
¢ light or default fonts.

Christophe Caignaert

TUGboat, Volume 31 (2010), No. 3

5 The end

Now I think the work is (almost) done and I'm proud
of three things:

* the package runs mainly correctly,

* some people like the fonts and some people
don’t like them,

* some people like to customize their text and/or
math typesetting using the set of options.

If everybody finds these three axioms are rea-
sonable, you know what, I'm happy...

If I, if I have been unkind,
I hope that you can just let it go by.

LeoNArD COHEN, Bird on the wire

¢ Christophe Caignaert
http://ctan.org/pkg/kpfonts

Solution to the quiz (p.168):

saunjvsifou pue

[sasdsva ‘sdvojjpuisadiv] ‘4xa13y 3]
sdvojjpuisadiv]

1x213y8i]

saunjv3ipfou

suondo ou

a]djspjo pue 1xa33y31]
saunjvdijfou pue 1xajiy3)
a]djspjo pue [s3sdspa
sdvojjpuisagiv] pue suinuajdispjo
a]d3spjodiaa pue 1xa13yd1]

—

— a5 6N BN S

TUGboat, Volume 31 (2010), No. 3

Giving it away

Jim Hefferon

In the early 90s I wrote an undergraduate textbook.
Inspired by the tools used to write it, including KTEX,
I made the book available under a free license, the
GNU Free Documentation License.!

Authors today do this more often but back then
giving away a book was unusual. Since this mate-
rial has been around for longer than most, perhaps
a discussion of my experience would be helpful to
someone considering such a project.

I will discuss advantages and disadvantages of
using TEX for this, and a few other points. I won’t list
the TEX code but you can get it from the book’s web
page: http://joshua.smcvt.edu/linearalgebra.

1 Background

The book Linear Algebra is for a US undergradu-
ate course often taken during a student’s second
year. The pedagogical goal is to help these young
students make a transition from the formula-driven
early classes to proof-driven later courses. It is popu-
lar, with 100,000 downloads last year, and it is often
listed first in a “linear algebra” web search.

In addition to the PDF of the text, downloaders
can get the full M TEX source. They can also get
a PDF of the fully-worked answers to all exercises,
even the proofs.

All this was helped by using KTEX. For one
thing, I wasn’t paying a typesetter so I didn’t have
to recoup that cost, and revisions cost me no money.
I also benefited from the advanced and free tools,
such as GNU/Linux and Emacs with AUCTEX, that
fit a BTEX workflow.

2 FETEX helps
I put Linear Algebra up for download more than
a decade ago. What I offer now is essentially un-
changed from what I offered then. That is, because
I use TEX, I have had no bit rot: I’ve never had
emails that say, “I have version 5 of the program and
you’ve used version 6 and I'm having trouble.” This
is great because an author providing material at no
profit has nothing to gain from version maintenance.
With time, I have enjoyed a number of other
advantages of TEX-based production. The main one
is that because TEX produces first-class output, an
instructor can without apology use the material in
class. Another advantage is that the source is com-
pact, limiting the amount by which downloads impact
my college’s bandwidth.

! http://www.gnu.org/licenses/fdl.html

175

3 Doing the exercises

When I started, I knew very little TEX. Back then
there were fewer packages and I had to program many
of my needs myself. T’ll try to give a potential author
a sense of the process by discussing what happened
in just one area, producing the exercises.

First, I wanted to number the formal parts in a
single sequence, including the exercises. Thus, if a
section ends with a lemma and a theorem numbered
1.15 and 1.16 then the problems should start with
1.17. For this, I had to read some KTEX source and
even small adjustments of existing macros can take
some head-scratching. Looking back, I'd guess this
beginner’s step took a day to work out.

Next I wanted to mark some exercises for people
reading the text on their own. I needed that

\begin{exercises}
\recommended\item Calculate the ..

would put a check in the margin next to the exercise.
This used KTEX lists and I had to ask online about
a point — perhaps it cost me two days.

My third problem was harder. I wanted the
source file to include answers to the exercises.

\begin{exercises}
\item Prove that ..
\answer{Observe first that ..}

For this, TEX writes the answer text to a separate file,
including in that file the exercise number. I could not
have done the programming but fortunately Mike
Piff provided the answers package to do exactly this.

(Many texts have either limited answer sets or
else the answers are not written by the author. If you
are a potential author, I urge you to consider doing
full answers. While providing these answers, and
ITEX-ing them myself, was a great deal of trouble,
it made the book much better for learners. For
example, answering an exercise might bring out a
subtlety and so I'd go back to adjust one of the
examples.)

However, for my exercises I had to do more than
Mike’s package provided. I wanted a hyperlink from
each question to its answer and one from the answer
to the question. For this I had to code inside the
hyperref package, which is hard. Perhaps this cost
me three days.

Another problem with the exercises arose after
I put the book up for download. Instructors wanted
to assign hand-in problems but didn’t want to invent
their own. The fact that students could download all
the answers prevented these instructors from using
the book. In response I tried posting only some
answers, which required that I develop an option to
produce only the answers to recommended exercises.

Giving it away

176

TEX’s if constructs gave me trouble, so this cost
me a couple of days. (At that time my policy was
that to get all the answers a person had to email me
with a good story. After a while the absurdity of this
became compelling and besides, finding the entire
set of answers by searching online became easy, so I
am now back to offering all the answers.)

I never solved my final problem. My workflow
was to compile the document, generating the answers
as a separate file, and then to compile those answers.
If B'TEX found errors in the answers then it reported
line numbers from the generated file. But I needed
the line number from the original source file. I hacked
at this a bit, but eventually felt that I should be
writing the book instead of writing the tool used for
the book, and so I never got it to go.

4 Positives, negatives

Providing the book free for download has had some
positive effects. I am delighted to get emails from
people, particularly people with few resources, who
say that they have been helped by the text and by
its availability. Another positive is the bug reports
that some readers send. That is, providing it freely
has garnered both exposure and good will.

There have also been some aspects of this dis-
tributing method that were more mixed.

I know of five projects to use the source as the
basis for a translation. But while one project is still
in progress and looks promising, the other attempts
have petered out.

T also know of three projects to use the source to
make a wiki. The one I know the best was very well
done and includes all of the text and illustrations.
However, these projects never achieved true wiki-
osity in that they never became dynamic documents
with many contributors.

The experiences of the wiki folks matches my
own. I imagined that providing the ITEX source
would allow instructors to adjust the text by adding
or deleting sections or exercises. In particular, each
chapter has sections of topics, which are optional,
light, extensions of the material. On the download
page I solicited contributions of more topics and exer-
cises and seeded my collection by imposing on a few
colleagues. To get contributors started, I provided
a booklet on compiling the text’s source. However
my imagination was wrong; no contributions have
appeared.

Finally, I will mention a potential negative as-
pect of free distribution: people have downloaded the

Jim Hefferon

TUGDboat, Volume 31 (2010), No. 3

book and put it up for sale at online print-on-demand
publishers. Some of these are instructors or schools
who want their students to buy the paper book for
a course, which is perfectly natural and fine (in fact,
after many calls I've put on the download page a
note to college bookstores assuring them that it is
allowed). In another case the people involved sell the
text at cost, to make a paper version easily available.
But I also know of people who simply grabbed some
freely available books to sell for a profit, which is
annoying. Perhaps I will someday put up my own
on-demand version but so far I have stuck to online
distribution.

5 DPossibilities

When I started, there were no stand-alone book
display devices so I did not provide the material
in a format that suits these. Were I starting this
project today, I would study the possibilities of these
alternative platforms.

Even more interesting are the possibilities for
interactive goodness. Today PDF is an open standard
and allows JavaScript, so there is a stable way to get
cross-platform interactivity.

The most exciting possibility would be to have
a group of people contributing applications. Anyone
who watches an active Internet community has to
be impressed with the tremendous creativity and
energy that can happen when great people get going.
Again, the fact that ITEX is a standard with first-
rate output makes this at least conceivable.

6 Closing

Free distribution, particularly based on TEX, has
some real advantages but some trade-offs as well.

Chief among the advantages of IATEX for this
project were its high-quality output, its stability,
and the widespread availability of associated tools.
Because of these advantages, I could offer a text free
for download without a long-term commitment to
maintenance.

The main disadvantage to producing the work
in BTEX was the coding. This may be mitigated by
the fact that there are more ITEX packages today,
so the need for individual coding may be reduced.

If you take on such a project, enjoy!

o Jim Hefferon
Saint Michael’s College
Colchester, VT USA
ftpmaint (at) tug dot ctan dot org

TUGDboat, Volume 31 (2010), No. 3

Glisterings
Peter Wilson

If our understanding have a film of
ignorance over it, or be blear with gazing
on other false glisterings, what is that to
truth?

Of reformation in England, JOHN MILTON

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

When true simplicity is gained,

To bow and bend, we will not be ashamed.
To turn, turn, will be our delight

"Til by turning, turning, we come ’round
right.

Simple Gifts, a Shaker hymn

Meandering miniature books

Some years ago William Adams produced an eight-
page booklet called One Typeface, Many Fonts [1],
which I encourage you to get if you do not already
have it. Apart from the content and the various type-
faces an interesting aspect was that it was printed on
one side of a single sheet of letterpaper, which could
then be cut and folded to make the final booklet. I
found this the other month when I was clearing out
old papers getting ready to move house.

A little earlier I had come across a class of books
called miniatures [2], which are defined as books not
more than 3in, or 76 mm, in height.! Some are
shown in Figure 1. The largest is 3 by 2 1/8 inches
and is a miniature book about miniature books. The
two smallest in the group are 1 5/8 by 1 1/4 inches.
One is John Kennedy’s Inaugural Address in January
1961 and the other is Abraham Lincoln’s speech at
Gettysburg in November 1863. The type in these
appears to be just a little smaller than that in the
footnotes here.

These two events got me to wondering whether
there were other methods like William’s of creating
a (miniature) booklet. I tried cutting and folding
scrap paper in many ways with not much success
until I remembered that I had a book by Cherryl
Moote [6] which had been advertised with:

1 In 2000 the record for the smallest miniature was held by
The Twelve Horary Signs — Chinese Zodiac published in an
edition of 100 by the Topan Printing Company, Tokyo, Japan.
It measured just 0.95 mm square!

177

e by
¢ MINIATMRE 0
| LEAF BOOKS L

A

Herries Collection

Figure 1: Some miniature books; the scales are
marked in inches, points, and picas

Figure 2: Accordion layout

This book features book forms perfect for
creating small editions of art books with your
photocopier or computer printer. ...Standard
size papers are used for most projects ...

There are several ways in which you can print on
one side of a single sheet and by folding and cutting
make acceptable small works. The simplest is an
accordion book where the pages on the sheet are laid
out as in Figure 2. In this and later diagrams the
numbers correspond to the page ordering and text
orientation, with potentially ambiguously oriented
numbers underlined, such as 1, 6, and 8. Thin lines
are where the paper is to be folded, and thick lines
where it is to be cut. In the accordion form the
folds are alternately up and down (or down and up).
Many Japanese and Chinese books use this basic
form. One example is illustrated in Figure 3 which
shows one quarter of a book whose English title is
Biographies of Twelve Chinese Great Scholars; the
text is in both Chinese and a form of English.

Another simple form is one called French Folds
where the paper is folded in half one way then folded
in half again the other way. This is often used for
greetings cards, and is illustrated in Figure 4.

William Adams refers to his booklet form as
a Stroke Book and it is called a Two-Minute Book
by Cherryl Moote. The general layout for such a

Glisterings

178

Herries Collection

Figure 3: A Chinese book in the accordion style,
showing one quarter of the overall work which
measures 8 1/4 inches by 14 feet

Figure 4: French Folds layout

work is shown in Figure 5. William’s instructions for
‘binding’ the booklet are:

After printing fold in half (top to bottom),
unfold, fold in half lengthwise, then fold in half
and open, and fold each resulting panel in half,
unfold and restore to the original fold, then
cut along the inner half of the lengthwise fold,
open and fold lengthwise. Then all the pages
should be folded within the front and back
covers and voila! a single signature booklet.

Another way of describing the procedure is:

Fold in half, short side to short side (1/2
to 6/5) with text exposed; this is called a
mountain fold. Fold each half in half again
(6/5 to 7/4 and 1/2 to 8/3) with text hid-
den; these are both walley folds. Unfold to
original flat sheet. Fold in half lengthwise
(1/8/7/6 to 2/3/4/5) with text exposed (i.e.,
a mountain fold). Cut along the inner half
of the lengthwise fold (the thick line in the
diagram). Refold lengthwise, push the two
pairs of end pages (1/2 and 6/5) towards each
other and the center pages should fold out-
wards. Finally, fold the result so that the
pages are in the prescribed order.

I didn’t know how William imposed his eight
pages onto the one sheet but I suspected that he
typeset each page on separate sheets then used some
imposition software like psnup to arrange these on a
single sheet. I have since learnt from him? that:

2 Personal email, 2008/06/25.

Peter Wilson

TUGDboat, Volume 31 (2010), No. 3

—i
o0l
D~
Ne]]

Figure 5: Layout for a Two-Minute book

I composed One Typeface Many Fonts in
Altsys Virtuoso (a drawing program) on
my NeXT Cube—1I saved out .eps files (a
nifty facility of a pdf viewing program I was
using in NeXTstep) and then arranged and
rotated the bits by hand working up from
a folded “dummy” (you're a dummy if you
don’t make a dummy).

I know of some pure KTEX methods for impo-
sition. There is the booklet package [9] for creating
a booklet of half-size pages from full size originals,
and Nicola Talbot’s flowfram package [8] which lets
you define ‘frames’ on a page and the text will auto-
matically flow from one frame to the next; Andreas
Matthias’ pdfpages package [5] provides imposition
facilities if you are using pdfIATEX. As separate pro-
cesses Angus Duggans’ PSUtils suite [3] has several
programs, such as psnup, for imposition of ps files,
while Tom Phelps’ Multivalent suite of tools [7]
provides similar programs for dealing with pdf files.
I was, though, particularly interested using IXTEX to
create miniature books from a single sheet of paper,
printed on one side only, of short poems or epigrams
without using any packages. For this kind of work
it seemed reasonable to do ‘page breaking’ by hand
rather than automatically, as the flowfram package
would provide.?

Cherryl presented several layouts that, applied
to the most common size* of paper, result in a minia-
ture book. These are illustrated in Figures 6-9. To
create a book from one of these, cut along the thick
lines and then start folding starting with pages 1
and 2, where 1 will be the first one in the book, and
proceeding along until page 16 is reached. The folds
should be alternately mountain and valley. The dia-
grams show the initial orientation of the text ‘pages’
to give a reasonable orientation after the folding.
The pages may be hinged at the left or right or top
or bottom. The orientation sequence does depend

3 Also, I couldn’t work out how to automatically put a
‘page number’ in the frames.
4 Either letter or A4 size.

TUGboat, Volume 31 (2010), No. 3 179

1 2 3 4

1 2 3 4
12 13 14 5

8 L 9 G
T 91 15 6

9 10 11 12
01 6 S 7

91 GT il 13

Figure 6: Spiral layout (mountain)
Figure 8: Snake layout (mountain)

1 2 3 4
4 5 6 7

¢l 13 14 5
€ G T 8

11 91 q1 6
14 15 16 9

01 6 8 L
. €l ¢l 1T 10

Figure 7: Spiral layout (valley)

on whether the first fold is a mountain or a valley. Figure 9: T layout (mountain)

When unfolding most of these layouts to read the
contents it may be necessary to twist and turn the
book in unexpected ways.

I don’t know if there are any commonly accepted
names for these layouts so I have used my own.

You can design your own layout if you prefer.
For instance Figure 10 is one that I made up; I
make no claim regarding either its usefulness or its
aesthetics, nor how the folds or page numbering
should be configured. The shape of the cuts vaguely
reminds me of stoking a wood burning stove, hence
the name.

Perhaps you have been wondering how I pro-
duced these diagrams? But even if you haven’t, I did
it by using the graphicx package and the picture
environment. For example, here is the essence of the
code for Figure 6; it does get tedious after a while.

Figure 10: Stove layout

Glisterings

180

Figure 11: Interleaved or Dos-a-Dos layout

%% turn its argument upside down
\newcommand*{\rupd} [1]{%
\rotatebox [origin=c]{180}{#1}}
%hht save some typing
\let\ul\underline
%hhh the diagram
\begin{figure}
\centering
\setlength{\unitlength}{0.003\textwidth}
\begin{picture}(100,120)
%hh% draw the boxes
\thinlines
\put (0,0) {\framebox (100,120) {}}
\put (25,0){\1ine(0,1){120}}
\put (50,0){\1ine(0,1){120}}

\put (0,90){\1ine(1,0){100}}

hhhh draw the cutting lines
\linethickness{2pt}

\put (0,90){\1ine(1,0){75}}

\put (75,90) {\1ine (0,-1){60}}
\put (75,30){\1ine(-1,0){50}}
\put (25,30){\1ine(0,1){30}}

\put (25,60) {\1line(1,0){25}}

%hhh insert the page numbers
\linethickness{Opt}

\put (0,90) {\framebox (25,30) {\ul{1}}}
\put (25,90) {\framebox (25,30) {2}}

\put (0,0) {\framebox (25,30) {\rupd{10}}}
\put (25,0) {\framebox (25,30) {\rupd{\ul{9}}}}
\put (50,0) {\framebox (25,30) {\rupd{\ul{8}}}}
\put (75,0) {\framebox (25,30){7}}
\end{picture}
\caption{Spiral layout (mountain)}
\label{fig:lay1M}
\end{figure}

Cherryl Moote described other layouts that led
to more complex results after cutting and folding, one
of which is illustrated in Figure 11. Essentially this
consists of two Two-Minute layouts (see Figure 5)
joined together. By folding this in one way you can
produce a Dos-a-Dos book which is two Two-Minute
books conjoined back to back, and in folding another
way you can interleave pages from the left and right
halves.

Peter Wilson

TUGhboat, Volume 31 (2010), No. 3

2 15

3 1 16 14
4 13
) 12

6 8 9 11
7 10

Figure 12: A triangular meander

A rather different one is illustrated in Figure 12,
being a kind of twisty triangular accordion book.
The numbers show the sequence of the triangular
pages but not the orientation of any text that might
be on them.

With all these layouts you have to experiment
to see what is best for the particular project you
have in mind.

As an aid to seeing how miniature books can
be based on one or other of the presented layouts I
offer Figure 13 and Figure 14. You can photocopy
these and cut and fold the copies to see what the
result(s) look like. Both of the offerings are based on
the Serpent layout, with the first following Figure 8
which starts off with a mountain fold. In this case
the title is on the very first page and the colophon
is on the last.

The second is meant to start off with a valley
fold, and the first and last pages after folding are
both blank. This is so you can use these pages as
endpapers and attach cover boards to them to give
a more finished look to the booklet.

If you would like to try something similar, here
is the code for the layout in Figure 14.

%%hh% The miniature page sizes

\newlength{\across}

\newlength{\down}

\setlength{\across}{0.2\textwidth}

\setlength{\down}{0.2\textheight}

%hk%h no space between an \fbox and contents

\setlength{\fboxsep}{Opt}

\let\fbx\fbox

%hkth vplace environment is in memoir class

%kl vertical placement of contents,

%hhh centered by default

\providecommand{\vplace}[1] [1]1{%
\par\vspace{\stretch{#1}}}

\def\endvplace{\vspace*{\stretch{1}}\par}

%h%h Put one minipage centered inside another

\newcommand{\portion}[1]{\fbx{/

TUGboat, Volume 31 (2010), No. 3

181

Vitae
Summa :
. They are not The weeping and
Brevis long, the laughter,
Ernest
Dowson
3 4
L 9
Love and desire
We pass the gate. and hate:
uoryrod ou
I99Je Sn Ul :
onet] Loy uryy
8 5
They are not the days of wine Out of a misty Our path
emerges for a
long, and roses: dream .
while,
9 10 11 12
VI
800¢

$so1d SOLLIOH oY,

‘TreaIp e UTIIAA

then closes

Figure 13: Layout of a miniature book based on that shown in Figure 8, starting with a mountain fold

Glisterings

182

TUGhboat, Volume 31 (2010), No. 3

onet] Loy uryy

Vitae
Summa .
. They are not The weeping and
Breuvis long, the laughter,
Ernest
Dowson
3 4
] L 9 g
-09e8 ot ssed opn I99Je Sn Ul uogod ou oret pue

9IISOP PU® A0

. . th
They are not the days of wine Out of a misty en?el;rels)afor a
long, and roses: dream &
while,
9 10 11 12
VI €T
8002

§s91d SOLLIOYH oY,

‘TreaIp e UTIIAA

S9SOTO LT[}

Peter Wilson

Figure 14: Layout of a miniature book based on that shown in Figure 8, starting with a valley fold

TUGboat, Volume 31 (2010), No. 3

\begin{minipage}[c] [\down] [t]{\across}
#1
\end{minipage}}}
\renewcommand{\portion} [1]{\fbx{%
\begin{minipagel} [c] [\down] [t]{\across?}
\centering
\begin{minipage}[c] [\down] [t]1{0.8\across}
#1
\end{minipage}
\end{minipage}}}
%h%l Vertically center contents of a portion
\newcommand{\vcp}[3] [1]1{%
\portion{\centering
\begin{vplace} [#1]#2\end{vplace}#3%
\vspace*{\onelineskip}}}
%h%#h turn contents of a \vcp upside down
\newcommand{\rvcp}[3] [1]1{%
\rotatebox[origin=c]{180}{%
\vep [#1]1{#2}{#3}}}
%%kl for typeseting page numbers
\newcommand*{\pgn} [1]1{{\tiny #1}}
%hhhhh Typeset
\noindent
%hlth top row
\vep{\mbox{}}{}
\vep{%
\Large \textit{Vitae Summa Brevis} \\[5mm]
\large Ernest Dowson}{}
\vcp{They are not long,}{\pgn{3}}
\vcp{The weeping and the laughter,}{\pgn{4}}
%hhh second row
\noindent
\rvcp{We pass the gate.}{\pgn{8}}
\rvcp{in us after}{\pgn{7}}
\rvcp{I think they have no portion}{\pgn{6}}
\rvcp{Love and desire and hate:}{\pgn{5}}
%hhh third row
\noindent
\vcp{They are not long,}{\pgn{9}}
\vcp{the days of wine and roses:}{\pgn{10}}
\vcp{Out of a misty dream}{\pgn{11}}
\vcp{Our path emerges for a while,}{\pgn{12}}
%hhh bottom row
\noindent
\vep{\mbox{}}{}
\rvcp{{\footnotesize The Herries Press\\[lcm]
2008}
\rvcp{Within a dream.}{\pgn{14}}
\rvcp{then closes}{\pgn{13}}

I have not used the whole of the printed sheet
in producing the miniatures, but rather the extent
of the typeblock (see the definitions of \across and
\down which I used in the specification of the size
of the final pages). If you are using the memoir
class you can easily change the size of the typeblock,

183

otherwise you can use the geometry package. I also
boxed, using \fbox (via \fbx), each final page. If
you do not want to do that then change \fbx, for
example:

\renewcommand*{\fbx} [1]{#1}

May you have much pleasure in creating your
own unique miniature books.

Acknowledgements

William Adams was kind enough to review the col-
umn and I have incorporated many of his suggestions.
One that I didn’t, but will now, is to say that he felt
that another possible source for folding techniques
would be the literature on origami. Though perhaps
not directly related, he said that The Folding Uni-
verse [4] is a fascinating book regardless and well
worth looking at.

References

[1] William Adams. One Typeface, Many Fonts.
William Adams, http://mysite.verizon.
net/william_franklin_adams/portfolio/
typography/onetype-sheet.pdf, 1997.

[2] Anne C. Bromer and Julian I. Edison.
Miniature Books: 4,000 Years of Tiny
Treasures. Abrams in association with The
Grolier Club, 2007. ISBN 978-0-8109-9299-3.

[3] Angus Duggan. PSUtils, 2008. (http:
//www.tardis.ed.ac.uk/~ajcd/psutils.

[4] Peter Engel. The Folding Universe. Vintage,
1989. ISBN 0394757513.

[5] Andreas Matthias. The pdfpages package, 2010.
http://mirror.ctan.org/macros/latex/
contrib/pdfpages.

[6] Cherryl Moote. Copied, Bound & Numbered.
At Your Ease Publications, 2003. ISBN
0-9688811-7-3.

[7] Tom Phelps. Multivalent, 2008.
http://multivalent.sourceforge.net.

[8] Nicola L. C. Talbot. Creating flow frames
for posters, brochures or magazines using
flowfram.sty, 2010. http://mirror.ctan.org/
macros/latex/contrib/flowfram.

[9] Peter Wilson. Printing booklets with ATEX,
2009. http://mirror.ctan.org/macros/
latex/contrib/booklet.

¢ Peter Wilson

herries dot press (at)
earthlink dot net

Glisterings

184

Three things you can do with LuaTEX that
would be extremely painful otherwise

Paul Isambert

Introduction

LuaTEX has made some typographic operations so
easy one might wonder why it wasn’t invented thirty
years ago (probably because Lua didn’t exist then).

Here I'm going to describe three simple features
that would require advanced wizardry to do the
same with any other engine. LuaTEX allows you to
explore some of TEX’s most intimate parts with a
rather easy programming language, and the result
is you can quite readily access things that were
unreachable before. The three issues I'm going to
address are:

e Turning lines into rules whose color depends on
the line’s original stretch or shrink.

e Underlining.

e Margin notes that align properly with the text.

T'll try to explain some of LuaTgEX’s basic
functionality as we encounter these issues, but two
of them are worth mentioning right now: callbacks
and nodes.

First, we can control TEX’s operations at
various stages thanks to callbacks. These are points
at which we can insert Lua code to modify or
enhance TEX’s processing. Callbacks range from
processing TEX’s input buffer (e.g. to accommodate
a special encoding) to rewriting the paragraph
builder and loading OpenType fonts.

Second, we can manipulate lists of nodes. To
put it simply, nodes are the atoms that TEX
uses to create pages: boxes, glyphs, glues, but also
penalties, whatsits, etc. A list of nodes is a sequence
of such atoms linked together. A simple paragraph,
for instance, is a list made of horizontal boxes (the
lines), penalties and glues. The boxes themselves
are lists containing mostly glyph and glue nodes.
Nodes are linked together like beads on a string, and
the prev field of a node points to the preceding node
in the list, whereas the next field returns the one
that follows (there is an understandable exception
for the first and last nodes of a list, whose prev and
last fields respectively return nil). An important
point to keep in mind is that when you query the
content of, say, an \hbox, which in TEX’s internal is

Author’s note: I'm not a member of the LuaTEX team and
this paper has no kind of official authority —it’s just the
result of experimentation by a LuaTEX user. Any error or
misconception is mine.

TUGDboat, Volume 31 (2010), No. 3

a horizontal list, what you get is the first node of
that list; you access the rest by sliding from next to
next.

Nodes also have several other fields, depending
on their types. These types are recorded as a
number in their id field, a numeric value. For
instance, a glue node has id 10, whereas a glyph
node has id 37. As long as LuaTgX hasn’t reached
version 1, though, such values might change. So, in
order for our code to last, we must use the following
workaround: the node.id() function, when fed a
string denoting a node type, returns the associated
id number. For instance, node.id("glue") returns
10. Thus, when using symbolic names, we can
get the right id value, regardless of changes in
versions of LuaTgX. Another important field for
nodes is subtype, which distinguishes between nodes
with the same id. It’s a numeric value, and for
whatsits (which are numerous), one should use
node.subtype () like node.id().

Symbolic names won’t change; they are listed
in the LuaTEX reference manual, in the chap-
ter called Nodes, available from the LuaTgX web
site; they’re also listed in the tables returned by
node.types() and node.whatsits(). It’s simpler to
define variables beforehand rather than call node.id
and node.subtype each time we need them. That’s
what we’ll do here: the following declarations should
start any file containing our code; it can also be
made global by removing the local prefix and thus
used anywhere once declared, but local variables
are faster and safer. I use uppercase to mark their
status.
local HLIST = node.id("hlist")
local RULE = node.id("rule")
local GLUE = node.id("glue")
local KERN = node.id("kern")
local WHAT = node.id("whatsit")
local COL = node.subtype("pdf_colorstack")

The color of a page

Typographers speak of a page’s color. While the
color itself depends on several factors, its evenness
depends on how lines are justified: loose lines make
the page uneven in color, because large interword
space creates holes in the overall greyness.

The code that follows takes the metaphor
literally: it turns a page’s color into a real color
pattern. The idea is to replace each line with a
rule of the same height and width, and whose color
depends on the line’s badness. If we take 0 as black
and 1 as white, then a good line gets .5, tight lines
approach 0 (which represents an overfull line) and

TUGDboat, Volume 31 (2010), No. 3

loose lines tend to 1 (an underfull line). Now we
have paragraphs and pages made of grey bars; the
less contrast between them, the better the page.
To do this, we retrieve the horizontal boxes
created by the paragraph builder, check the badness
of each, then replace the box with the desired
rule. This is easy to do in LuaTgX: we register
a function in the post_linebreak_filter callback.
This callback accesses the list of nodes output
by the paragraph builder, i.e. the lines of text
interspersed with interline penalties and glues, plus
perhaps other things (whatsits, inserts, ...) that
we’ll ignore. Among these nodes we retrieve the
ones we want, namely the lines of text, and replace
them as described.
The code that follows, as all Lua code, should
be fed to \directlua or stored in a .lua file.
local color_push = node.new(WHAT, COL)
local color_pop = node.new(WHAT, COL)
color_push.stack = 0
color_pop.stack =0
color_push.cmd =1
color_pop.cmd =2
Here we have created two new whatsit nodes iden-
tified by their subtype as the Lua equivalents of
\pdfcolorstack. They both modify stack 0 and
color_push adds code to the stack while color_pop
removes it. We'll use them to set the color of each
line, with the exact content of the code added by
color_push to be specified each time.
textcolor = function (head)
for line in node.traverse_id(HLIST, head) do
local glue_ratio = 0

if line.glue_order == 0 then
if line.glue_sign == 1 then
glue_ratio = .5 * math.min(line.glue_set,
1)
else
glue_ratio = -.5 * line.glue_set
end
end

color_push.data = .5 + glue_ratio ..

" ogn
Here’s the beginning of our main function. It takes a
node as its argument: it will be the first node of the
list returned by the paragraph builder. That node,
remember, denotes the entire list. We retrieve each
line of text in this list, i.e. each node with id HLIST,
and check its glue_order field; if it is 0, then the
line has been justified with finite glue and we want
to know how bad it is (if the line uses infinite glue
then it is good by definition, as far as glue setting is
concerned). We access glue_sign to know whether
stretching or shrinking was used and glue_set to
know the ratio (1 means the stretch/shrink was
fully used; glues can also be overstretched, but we

185

don’t allow more than 1 in order to remain in the
color range).

The last line sets the color of the line as the
code to color_push, i.e. ‘n g’, where n is a number
between 0 and 1 and g a PDF operator setting the
color in the grey model. In the rest of the loop we
replace the line’s content with a sequence of three
nodes: color_push, a rule, and color_pop:

local rule = node.new(RULE)
rule.width = line.width
local p = line.list
line.list = node.copy(color_push)
node.flush_list(p)
node.insert_after(line.list,
line.list, rule)
node.insert_after(line.list,
node.tail(line.list),
node. copy (color_pop))
end

What is done here is: first, we create a rule whose
width is the same as the original line’s (we could
have created this rule beforehand with a width
equal to \hsize, but this way we accommodate
changing line widths). Then we set the line’s list as
a copy of color_push (we use a copy since we need
that node for each line), and then we insert the rule
node and a copy of color_pop. The first argument
t0 node.insert_after is the list (denoted by its first
node!) where we perform the insertion, the second
one is the node in that list after which the insertion
is performed, and the last one is the inserted node;
node.tail returns the last node of its argument, so
the third node.insert_after inserts at the end of
the list.

The story with p is this: we retrieve the line’s
content before replacing it, so we can erase it from
TEX’s memory; it has no effect on the output.

Finally, and most importantly, we return the
mutated list for TEX to continue its operations, and
close the function.

return head
end

Now, to use the function, we register it in the
post_linebreak_filter callback:

\directlua{%
callback.register("post_linebreak_filter",
textcolor)}

Note that we could improve this code for the
first and last lines of a paragraph, taking the
indent and \parfillskip into account to create
more faithful images of those lines. I leave it as an
exercise to the reader, as is customary.

186

Underlining

The previous code was (hopefully) fun but not ter-
ribly useful (well, who knows?); let’s do something
(hopefully) more useful and no less fun.

Everybody knows that underlining is in bad
typographic taste. That said, it may have its
uses, and anyway allows us to investigate LuaTEX
further. Underlining has been done in TEX (see
Donald Arseneau’s ulem, for instance); it requires
great wizardry and has some limitations. With
LuaTgX, it’s (almost) child’s play.

The problem with underlining in TEX is that
you have to add the underline before the paragraph
is built, and this hinders hyphenation. In LuaTgX
we can do it after hyphenation is done: we retrieve
the nodes to underline in the typeset lines. But how
do we spot them? The answer lies with another basic
LuaTgX functionality, namely attributes. These are
very simple yet very powerful. An attribute is like
a count register in that it holds a number. The
difference with a count register is that nodes retain
the values of all attributes in force when they were
created. Thus, we can set an attribute to some
value, input some text, and then reset the attribute;
the text will have the value attached to it for the
rest of TEX’s processing.

This leads to the first definition:

\def\underline#1{,
\quitvmode \attributel00 = 1 #17
\attributel100 = -"T7FFFFFFF

\directlua{callback.register(

"post_linebreak_filter", get_lines)l}¥

}
It’s important to use \quitvmode so that the inden-
tation box is inserted before the attribute is set and
not be underlined (in case the underlined text is the
beginning of a paragraph).

An attribute is ‘set’ if it has any value but
-"TFFFFFFF. So setting it to 1 here would be
the same thing as setting it to —45 (see the end
of this section for an example of use for different
values). Now all nodes produced by the argument
to underline have the value 1 for attribute 100—
which was arbitrarily chosen. Attribute 458 would
have been equally good. Actually, one should use
attributes with greater care, i.e. they should be
allocated with macros like \newcount, so that one
never uses the same attribute for different tasks.

The last action performed by \underline is
to register a function in the post_linebreak_filter
callback. It does so because the Lua function used
to underline clears the callback (as we’ll see), so
that it is called only on those paragraphs where it

TUGDboat, Volume 31 (2010), No. 3

is required. It could be called on all paragraphs,
but it’d waste TEX’s time.
Let’s now turn to the Lua functions:
get_lines = function (head)
for line in node.traverse_id(HLIST, head) do
underline(line.list, line.glue_order,
line.glue_set, line.glue_sign)
end
callback.register
("post_linebreak_filter", nil)
return head
end

This first function retrieves all lines in the paragraph
and feeds their content to the underline function
along with information about glue setting. It then
clears the callback and returns the head. This part
is nothing we haven’t seen in the previous code.
Some nodes might have inherited the attribute’s
value, although we don’t want to underline them:
\leftskip, \rightskip, and \parfillskip. These
are glue nodes and their subtypes are 8, 9 and
15, respectively. The following function is meant
to filter them out. (Note: versions prior to
v0.62 had a bug where \leftskip and \rightskip
were not properly identified, so item.subtype ==
should be added to the or conditional below. Both
TEX Live 2010 and MikTEX 2.9 uses v0.60, so they
are affected.)
local good_item = function (item)
if item.id == GLUE and
(item.subtype == 8 or item.subtype ==
or item.subtype == 15) then
return false
else
return true
end
end
Now, here’s how the underline Lua function
starts:
underline =
function (head, order, ratio, sign)
local item = head
while item do
if node.has_attribute(item,100)
and good_item(item) then
local item_line = node.new(RULE)
item_line.depth = tex.sp("1.4pt")
item_line.height = tex.sp("-1pt")
The while loop is basically the same thing as
traversing the list, but we’ll sometimes want to
skip nodes, so we’ll set the next one by hand.
We scan nodes, and once we’ve found one with
the right value for the attribute (and which is not
one of the glues above), we create our rule (with
arbitrary dimensions). tex.sp turns a dimension

TUGDboat, Volume 31 (2010), No. 3

(expressed as a string) into scaled points, the native
measure for Lua code. How wide should the rule
be? The length of the material starting at the
current node up to the last node with the right
attribute. To find this last node, we use the
following loop, and then retrieve the length of
that material via node.dimensions, which returns
the material’s length when it is typeset with the
text line’s glue setting. We use end_node.next
because the function actually measures up to its
last argument’s prev node.
local end_node = item
while end_node.next and
good_item(end_node.next) and
node.has_attribute(end_node.next, 100) do
end_node = end_node.next
end
item_line.width = node.dimensions
(ratio, sign, order, item, end_node.next)

Finally we insert the line into the list. That’s
pretty simple: we insert a negative kern (with
subtype 1, i.e. a handmade kern, not a font kern)
as long as the line after the last underlined node,
followed by the line itself. This is equivalent to
using \1lap in plain TEX. The end of the code sets
the next node to be analyzed (including the false
part of the overall conditional).

local item_kern = node.new(KERN, 1)
item_kern.kern = -item_line.width
node.insert_after(head, end_node,
item_kern)
node.insert_after(head, item_kern,
item_line)
item = end_node.next
else
item = item.next
end

end

end

We could use different values of the attribute
to distinguish different underlining styles. To do
so, we would still use node.has_attribute, since it
returns the value of the attribute, or nil if the
attribute isn’t set. That’s another exercise left to
the reader.

Marginal notes

When a document has comfortable margins and
notes are infrequent and short, marginal notes are
an elegant and convenient alternative to footnotes.
They are best typeset with their first line level with
the line in the text to which they refer. However,
such a rule cannot be absolute. Suppose for instance
that a note is called on the last line of a page, and

187

itself is made of more than one line. If we follow the
rule then the note will invade the bottom margin
and ruin the design of the page. So it should be
shifted up so that its last line is level with the last
line of the page. Doing this is also an improvement
when the text doesn’t fill the page, e.g. at the end
of a chapter, even though there might remain space
on the page to accommodate the note. The page
looks better that way: a note is a note and would
be too conspicuous if it were allowed to run without
the main text by its side. Ideally, a note should also
be shifted up if it runs along a section break, but
I'll ignore that case, to keep things simpler. (For an
alternative approach in I#TEX, see Stephen Hicks’
article in TUGboat 30:2.)

Generally marginal notes are typeset in a
smaller font size and on a smaller leading than the
main text. Since the leading is smaller, some lines of
the notes won’t be level with the textblock’s lines;
however, there should be some ‘cyclical synchroni-
city’ between the two blocks, so that for instance
three lines of the main text have the same height
as four lines of the note (in TEX terms it would
mean, for instance, \baselineskip at 12pt and 9pt
respectively), and the following lines are level again.

Here, however, I will typeset notes with the
same leading as the main text to avoid complica-
tions. Extra calculations are required to achieve
what’s been previously described —nothing very
complicated, though. T’ll simply use italics to
distinguish the notes from the main text.

Margin notes so numerous that they sometimes
overlap each other and must be shifted upward
should probably be converted to footnotes, all the
more as they’ll require a number or symbol so the
reader can spot where in the main text they refer
to— whereas sparse notes don’t need such a mark,
since they’re supposed to start on the same line as
the text they comment, with the known exception
we're investigating here. However, we can use
the code below to shift notes whatever the reason,
so we’ll leave @esthetics aside and shift all notes
(the shift might go wrong if there are stretchable
vertical glues on the page, e.g. \parskip; that can be
amended, and it’s left as yet another exercise). We
won’t allow more than one note per line, though,
because that definitely doesn’t make sense.

Here’s the TEX part of the code:
\newcount\notecount
\suppressoutererror=1
\def\note#1{Y%

\advance\notecount 1
\expandafter\newbox
\csname marginnote_\the\notecount\endcsname

188

\expandafter\setbox
\csname marginnote_\the\notecount\endcsname=
\vtop{\hsize=4cm
\rightskip=Opt plus 1fil
\noindent\it #1}J
\bgroup
\attributel00=\expandafter\the
\csname marginnote_\the\notecount\endcsname
\vadjust pre {\pdfliteral{}}/
\egroup
}
This might be somewhat unfamiliar, even to ad-
vanced TgXies, because what we’re doing is prepar-
ing the ground for Lua code. First, we choose not
to insert the note directly in the paragraph (to be
shifted later if necessary). Instead, we store the
note in a box. For each note, we create a new box;
that might seem somewhat resource-consuming, but
there are 65,536 available boxes in LuaTgX, so a
shortage seems only a distant possibility. Alterna-
tively, we could store only the source code for the
note (in a macro), and typeset it in a box only when
we place notes on the page in the output routine,
but the asynchronicity between the processing of
the main text and the note might lead to trouble.

So we create boxes instead, with proper settings
(mostly, a reduced \hsize). To allow \newbox to
appear inside a macro definition in plain TEX, we
suppress the outer error beforehand; then we set
the note in its box with a uniquely defined name
(thanks to \newcount), and most importantly we set
an attribute to the value of the box register and
\vadjust a literal with that attribute. This literal’s
only role is to mark the line it comes from, so
we’ll be able to spot lines with margin notes when
needed, along with the box’s number (the value of
the attribute).

The following Lua function, to be inserted in
the post_linebreak_filter callback, does exactly
that: our special \pdfliterals give their attributes
to the lines they come from, and are removed. Now,
the reader might have wondered why we used the
pre version of \vadjust instead of the default: it’s
because of a bug in the actual version of LuaTEX (to
be fixed in v0.64, I am told): some prev fields are
sometimes wrong, as would be the case here, and we
couldn’t link each literal to its line if the latter was
before the former. So we use next instead. Note
that we can’t just take for granted that the first
next node is the line, first because ‘pre-\vadjusted’
material is inserted before the baselineskip glue,
and because there might be more adjusted material
between the literal and the line. So we recurse over
next fields until we find a line (i.e. a node id HLIST).

TUGDboat, Volume 31 (2010), No. 3

mark_lines = function (head)
for mark in node.traverse_id(WHAT, head) do
local attr = node.has_attribute(mark, 100)
if attr then
local item = mark.next
while item do
if item.id == HLIST then
node.set_attribute(item, 100, attr)
item = nil

else
item = item.next
end
end
head = node.remove(head, mark)
end
end
return head
end

The following function scans the content of a
vertical list, probably box 255, finds the lines that
have attribute 100 set to some value, and adds
the margin notes to those lines. Remember that
our goal is to avoid margin notes running into
the space below the textblock (either the bottom
margin or the vacant space at the end of a chapter).
So we must compute how much space remains
to accommodate the note. To do so, we scan
the box (the page), starting at the bottom, and
accumulate the height and depth of lines and the
width of kerns and glues— except kerns and glues
that might appear before the last line, i.e. space
filling the page. To do so, we have a first boolean
that is true as long as a line hasn’t been found and
prevents adding the width of glues and kerns. With
node.slide we grasp the last node of the list, since
we’re reading it backward.
process_marginalia = function (head)

local remainingheight, first, item =
0, true, node.slide(head)
while item do
if node.has_field(item, "kern") then
if not first then
remainingheight = remainingheight
+ item.kern
end
elseif node.has_field(item, "spec") then
if not first then
remainingheight = remainingheight
+ item.spec.width
end

Now, if we find a line, we add its depth if and
only if it’s not the first one we encounter (i.e. the
last one on the page), because in that case its depth
belongs to the bottom margin. Its height is added
later, if and only if the line doesn’t take a note.

TUGDboat, Volume 31 (2010), No. 3

elseif node.has_field(item, "height") then
if first then
first = false
else
remainingheight = remainingheight
+ item.depth
end

If attribute 100 is set to some value, then the
line takes a note. In that case, we retrieve the box,
measure its depth, and compare it to the remaining
height. Note that the depth of the box is all its
material barring the height of its first line (since
we used a \vtop), which is exactly what we want:
its first line can’t go wrong, since it’s level with
the main text’s line from whence it came. We also
remove the depth of the last line, since its going
into the bottom margin is perfectly ok.

local attr = node.has_attribute(item, 100)

if attr then
local note = node.copy(tex.box[attr])
local upward = note.depth
- node.tail(note.list).depth
if upward > remainingheight then
upward = remainingheight - upward
else
upward = 0
end

Now we insert the note box after the line: first,
we add a negative vertical kern to account for the
upward shift (possibly 0), plus the line’s depth and
the note’s height (i.e. the height of its first line),
so it is level with the line. We then set the note’s
height and depth to 0, so it doesn’t take up space
on the page. (Since the kern becomes the head of
the list, we have to explicitly set note.list to it,
otherwise TEX still thinks the previous head is the
good one.)

local kern = node.new(KERN, 1)
kern.kern = upward - note.height
- item.depth
node.insert_before(note.list,
note.list, kern)
note.list = kern
note.height, note.depth = 0, 0

Finally, we insert the note and set its horizontal
shift (here it goes into the right margin, but this
should depend on whether the page is even or odd),
and reset first and remainingheight, the latter
to upward so the vertical shift of the current note
(if any) is taken into account for the following
one. The rest of the code is the end of the attr
conditional (false, so we add the line’s height to the
remainingheight) and the end of the main loop.

189

node.insert_after(head, item, note)
note.shift = tex.hsize + tex.sp("lem")
first = true
remainingheight
else
remainingheight = remainingheight
+ item.height

upward

end
end
item = item.prev
end
end

When a page is found good, before we ship it
out (and before we add inserts too), we feed it to
the function, so notes are added. For instance, a
very simple output routine would be:

\output{%
\directlua{’
process_marginalia(tex.box[255] .1ist)

Y

\shipout\box255}

The important part is, of course, the Lua code.

Conclusion

LuaTEX has much to offer: UTF-8 encoding, non-
TFM fonts, a comfortable programming language,
... Access to TEX’s internals is, to me, one of its
most valuable features: it enables the user to do
things that were previously unthinkable, and gives
such control over typography that the software’s
limitations almost vanish, as if we were working on
a hand press—except we don’t manipulate metal,
but nodes.

A final note: in this paper, functions have been
added to callbacks with LuaTEX’s bare mechanism.
If two functions are added to the same callback this
way, the second erases the first. To do this properly,
the luatexbase package can be used for plain TEX
and I#TEX, and it is taken care of in ConTEXt.

The next page shows examples of our three
programs. First comes the page color, displaying a
typeset text and its translation to shades of grey;
the second text uses font expansion to show the
resulting improvement in justification. Then are
examples of underlining and marginal notes. The
text used is the first page of Robert Coover’s novel
The Adventures of Lucky Pierre.

o Paul Isambert
Université de la Sorbonne Nouvelle
France
zappathustra (at) free dot fr

—
©
o

In the darkness, softly. A whisper becom-
ing a tone, the echo of a tone. Doleful, incip-
ient lament blowing in the night like a wind,
like the echo of a wind, a plainsong wafting
silently through the windy chambers of the
night, wafting unisonously through the spaced
chambers of the bitter night, alas, the solitary
city, she that was full of people, thus a dis-
tant and hollow epiodion laced with sibilants
bewailing the solitary city.

And now, the flickering of a light, a pallor
emerging from the darkness as though lit by a
candle, a candle guttering in the cold wind, a
forgotten candle, hid and found again, casting
its doubtful luster on this faint white plane,
now visible, now lost again in the tenebrous
absences behind the eye.

And still the hushing plaint, undeterred
by light, plying its fricatives like a persistent
woeful wind, the echo of woe, affanato, pi-
angevole, a piangevole wind rising in the flut-
tering night through its perfect primes, lament-li
ing the beautiful princess become an unclean
widow, an emergence from C, a titular C, ten-
tative and parenthetical, the widow then, weep-i
ing sore in the night, the candle searching the
pale expanse for form, for the suggestion of
form, a balm for the anxious eye, weeping she
weepeth.

In the darkness, softly. A whisper be-
coming a tone, the echo of a tone. Doleful,
incipient lament blowing in the night like a
wind, like the echo of a wind, a plainsong waft-
ing silently through the windy chambers of the
night, wafting unisonously through the spaced
chambers of the bitter night, alas, the solitary
city, she that was full of people, thus a dis-
tant and hollow epiodion laced with sibilants
bewailing the solitary city.

And now, the flickering of a light, a pallor
emerging from the darkness as though lit by a
candle, a candle guttering in the cold wind, a
forgotten candle, hid and found again, casting
its doubtful luster on this faint white plane,
now visible, now lost again in the tenebrous
absences behind the eye.

And still the hushing plaint, undeterred by
light, plying its fricatives like a persistent woe-
ful wind, the echo of woe, affanato, piangevole,
a piangevole wind rising in the fluttering night
through its perfect primes, lamenting the beau-
tiful princess become an unclean widow, an
emergence from C, a titular C, tentative and
parenthetical, the widow then, weeping sore
in the night, the candle searching the pale ex-
panse for form, for the suggestion of form, a
balm for the anxious eye, weeping she weepeth.

And now, the flickering of a light, a pallor emerging from the
darkness as though lit by a candle, a candle guttering in the cold
wind, a forgotten candle, hid and found again, casting its doubtful
luster on this faint white plane, now visible, now lost again in the
tenebrous absences behind the eye.

And still the hushing plaint, undeterred by light, plying its
fricatives like a persistent woeful wind, the echo of woe, affanato,
piangevole, a piangevole wind rising in the fluttering night through
its perfect primes, lamenting the beautiful princess become an unclean
widow, an emergence from C, a titular C, tentative and parenthetical,
the widow then, weeping sore in the night, the candle searching the
pale expanse for form, for the suggestion of form, a balm for the
anxious eye, weeping she weepeth.

TUGboat, Volume 31 (2010), No. 3

‘Affanato’ means
‘anguished’
‘Piangevole’ means
‘plaintive’

‘Weepeth’ is an archaic
form of ‘weeps’

TUGboat, Volume 31 (2010), No. 3

Some misunderstood or unknown
ETEX 2¢ tricks (II)

Luca Merciadri

1 Introduction

IMTEX is written in such a way that even skilled
TEXnicians sometimes learn new tricks, or come to
problems or errors that they cannot easily solve, or
explain. This time, our article will be divided in two
(imaginary) parts: the first (Section 2) will treat

1. Avoiding erroneous references for floats,
and the second (the rest) will give, as in my preced-
ing paper (Merciadri, 2010), some ways to achieve
special things in IXTEX 2¢. These tricks are often ex-
plained on the Internet, but can be difficult to find.
Specifically, the second part will speak about

2. Exporting spreadsheets into INTEX,
Writing QED symbols as nicely as possible,
Counting the number of pages and tables,
Writing messages on would-be blank pages,
Writing dots in matrices,
Drawing logic gates,

© N ot w

Writing enumerations with textcircled numbers.

2 Avoiding erroneous references for floats

When writing a paper with ITEX, the authors often
let IMTEX do the cross-reference work. This results
in a notable gain of time, because the work for ev-

ery reference is automated. Consider a reference r
declared using \label{r}. If r is cited, I’ TEX will

1. Know its page number, which can be displayed
and linked (if hyperref is used) using
\pageref{r},

2. Know its reference, meaning that it knows r’s
place in the document structure.

But consider now a tabular environment placed in
a table environment. Placing the tabular environ-
ment centered at the page is a good idea, thereby
using
\begin{table}
\begin{center}
\begin{tabular}{cc}
Text & Text
\end{tabular}
\end{center}
\end{table}

or its \centering variant. To link this table to a ref-
erence, one needs to place a \label{reference} in
the table environment. One thing to remember
is that \label{} always comes after \caption{}.
That is, you must use neither

191

\begin{table}
\label{reference}
\caption{Name of the table.}
\begin{center}
\begin{tabular}{cc}
Text & Text
\end{tabular}
\end{center}
\end{table}

nor

\begin{table}

\begin{center}

\begin{tabular}{cc}
Text & Text
\end{tabular}

\end{center}
\label{reference}
\caption{Name of the table.}
\end{table}

You also need to end the center environment before
using \caption{}. That is, you should not use
\begin{table}[!h]
\begin{center}
\begin{tabular}{cc}
Text & Text
\end{tabular}
\caption{Name of the table.}
\end{center}
\label{tab:test}
\end{table}
but rather use
\begin{table}[!h]
\begin{center}
\begin{tabular}{cc}
Text & Text
\end{tabular}
\end{center}
\caption{Name of the table.}
\label{tab:test}
\end{table}
Notice also the better reference: tab:test is clearer
than reference. As \centering is local to the
(most nested) environment which contains it, you
can evidently replace the center environment by a
simple \centering:
\begin{table}[!h]
\centering
\begin{tabular}{cc}
Text & Text
\end{tabular}
\caption{Name of the table.}
\label{tab:test}
\end{table}
This concept is very important: some classes will not
render a reference if the \caption{}-\label{} or-
der is not respected. Even worse, others will put

Some misunderstood or unknown I¥TEX 2¢ tricks (II)

192

unrelated reference numbers, such as \thesection,
which can be disastrous: writing “thanks to Theo-
rem x, we have [...]” is a good way not to lose the
reader, but if z is a theorem number which does not
exist, or which has no link with the citation, the
whole paper might seem hastily written, or at least
not edited, or simply confusing to the reader.

3 Exporting spreadsheets into BTEX

It is sometimes desirable to export spreadsheets into
IXTEX. It can be useful for many purposes, such as
scientific experiments (collected data, for example),
or financial reports. This is easily achieved with
Calc2LaTeX (calc2latex.sourceforge.net).

4 Writing QED symbols as nicely
as possible

When ending an environment, it is often desirable
to let the reader know that the environment (prop-
erty, theorem, etc.) has ended. It is often done us-
ing an elegant symbol: a QED symbol. This sym-
bol might be anything you want, but such symbols
are often small, and geometric shapes (squares, di-
amonds, ...). You can define many QED symbols.
For example, you might define a QED symbol for
each environment of your choice, or use the same
one for every environment.

For example, to use ¢ as the QED symbol, you
could simply use \diamond. The problem with such
a simple approach is that, since you will end an en-
vironment with it (using \diamond or a homemade
command such as \mygedsymbol), nothing guaran-
tees that it will be placed correctly, i.e. that it will
not begin a new line, or be placed at a new page.

So, you can use a tricky combination of \hfill
and other commands to have your QED symbols
placed as nicely as you want. Such a combination
can be used to define a personal command such as
\gedsymbol, like this:

\def\qedsymbol{%

\mbox{1}/

\nolinebreak

\hfill

\diamond’, the ged symbol

\medbreak

\par
}
where the \medbreak is optional. You can then use
\gedsymbol, or, better, a package which does it for
you, such as ntheorem.

5 Counting the number of pages or tables

It might be interesting to know the number of pages
of the current document. This can be done easily
(MrUnix.de, 2010), e.g. by calling

Luca Merciadri

TUGhboat, Volume 31 (2010), No. 3

\ref{TotPages}

which would give as output the number of pages. In
an analogous way, one would for example want to
know the number of tables of the document. This
can be achieved using

\AbsTables

But before using the latter command, we must de-
clare (in the preamble)

\newcommand*{\OrigChapter}{}
\let\OrigChapter\chapter
\newcounter{abstables}
\renewcommand*{\chapter}{%

\addtocounter{abstables}{\value{table}}/,

\OrigChapter?,

}
\newcommand*{\AbsTables}{0}
\makeatletter
\AtBeginDocument{%

\AtEndDocument{%
\addtocounter{abstables}{\value{table}}/
\immediate\write\@mainaux{}

\string\gdef\string\AbsTables{}
\number\value{abstables}}
Y
§A
}
\makeatother

For the former command, we need only
\usepackage{totpages}

in the preamble.

6 Writing messages on would-be
blank pages

When reading a book, one sometimes encounters
“blank” pages whose only text is some sentence like

‘This page intentionally left blank.’

This allows the reader to know that there has not
been any printing issue with the book he is reading,
and that the blank pages he sees are normal, and
there for editorial reasons.

If you want such a message to appear in a IMTEX
document whose class is book, you might redefine
\cleardoublepage as follows:

\makeatletter
\def\cleardoublepage{\clearpage\if@twosidey,
\ifodd\c@page\else

\vspace*x{\fill}

\hfill

\begin{center}

This page intentionally left blank.
\end{center}

\vspace{\fill}
\thispagestyle{empty}

\newpage

TUGboat, Volume 31 (2010), No. 3

\if@twocolumn\hbox{}\newpage\fi\fi\fi
}
\makeatother

in the preamble. The pages which would otherwise
be left blank will now contain this message.

7 Writing dots in matrices

If sometimes happen to write special matrices, such
as matrices where elements of one column could be
moved to the next column, because other elements
could replace them. An example is given by

a b c

d e f

g h:i
This can be achieved using
\left(
\begin{array}{@{}cc@{}c@{}ca{}}
a &b & c\\
d & e & £\\
g & h & \makebox[2\arraycolsep]{\smash{\vdots}}

& i

\end{array}
\right)

in a math environment. Thanks to Philipp Stephani
for this trick.

8 Drawing logic gates

I found myself disappointed when looking for a sim-
ple way to draw logic gates. After much research, I
found circuitikz, which allows you to write “tra-
ditional” circuits (that is, circuits with simple resis-
tances, generators, inductors, ...), but also

}j res

This part of a circuit is created with

. A

\begin{circuitikz} \draw

(0,2) nodel[and port] (myandl) {3}

(0,0) nodel[and port] (myand2) {3}

(2,1) node[xnor port] (myznor) {3}
(myand1.out) node[above] {A} -| (myznor.in 1)
(myand2.out) node[above] {B} -| (myznor.in 2)
(myxnor.out) node[above] {res};
\end{circuitikz}

193

and

\usepackage{tikz}

\usepackage{circuitikz}

in the preamble. There are other features to this
package. This example was given to me by Mas-
simo Redaelli. You might check the package’s man-
ual (Redaelli, 2009) for other details.

9 Writing enumerations with
textcircled numbers

Using the enumerate package, you can write
\begin{enumerate} [\textcircled{\arabic{enumi}}]
\item Item 1

\item Item 2

\item \ldots

\item Item n

\end{enumerate}

for such a result:
@ Item 1
@ Item 2

@ Ttem n

This is simple to achieve, and might improve some
enumerated lists. Do not forget to put

\usepackage{enumerate}

in the preamble.

¢ Luca Merciadri
University of Liege
Luca.Merciadri (at) student dot ulg dot
ac dot be
http://wuw.student .montefiore.ulg.ac.be/
“merciadri/

References

Merciadri, Luca. “A Practical Guide to KTEX Tips
and Tricks”. 2009.

Merciadri, Luca. “Some misunderstood or
unknown ITEX 2¢ tricks”. TUGboat 31(1),
76-78, 2010. http://tug.org/TUGboat/31-1/
tb97merciadri.pdf.

MrUnix.de. “Gesamtanzahl Seiten, Abbildungen
usw. —mrunix.de”. 2010. http://www.mrunix.
de/forums/showthread.php?t=56716.

Redaelli, Massimo. “CircuiTikZ”. 2009. http://
mirror.ctan.org/graphics/pgf/contrib/
circuitikz/doc/latex/circuitikz/
circuitikzmanual.pdf.

Some misunderstood or unknown IXTEX 2¢ tricks (II)

194

IXTEX3 News

Issue 4, July 2010

Now that we’re back from the TEX Users Group confer-
ence in San Francisco, it’s time to discuss what’s been
going on over the last six months. Due to some extra
travel plans after the conference, this issue is slightly
late in coming out.

expl3 in practice

Joseph Wright and Will Robertson have both released
significant new versions of their packages, resp., siunitx
and fontspec. These have been re-written in the IXNTEX3
programming language expl3, which we have discussed
here previously. Using expl3 for production code has
been very successful, both in demonstrating that the
concepts are sound and highlighting areas that still
need some attention.

In the case of fontspec, expl3 programming is be-
ing used to target ITEX running on either X#IEX and
LuaTgX. In the latter case, the package is a mixture of
Lua code and expl3 code; Will presented the unicode-
math package at TUG 2010, which is developed in the
same style.

New xpackages

Frank Mittelbach has started to work on a new exper-
imental BTEX3 package xhead that provides templates
for one of the most complex areas of document de-
sign: section headings and document divisions. This

is the beginning of an ambitious idea to map out the
requirements for typesetting most documents currently
processed with ETEX.

One of the challenges here is providing a “natural”
design language for describing the two-dimensional spa-
tial relationships of objects participating in the design,
e.g., the placement of a heading number in relation to
the heading title, a possible sub-title, etc. In answer
to this challenge Frank developed the xcoffin package,
which he presented at TUG 2010. It is designed as a
high-level interface for placing and aligning boxes on
a page, allowing a ‘designer’s approach’ for indicating
the positional relationship between boxes. (A ‘coffin’
is a box with handles.) As an example, it is possible
to represent ideas such as ‘align the lower-left corner
of box A with the upper-right corner of box B after
rotating it ninety degrees’, without having to calculate
the intermediate positions.

We expect a future version of xcoffin (after some
further work on its interface layer and its internal

TUGDboat, Volume 31 (2010), No. 3

implementation) to play a major role in all packages
providing layout templates for higher-level document
objects, such as table of contents designs, floats, etc.

Finally, Joseph Wright has begun work with the
current ‘galley’ packages, producing the new, minimal,
xgalley based on xfm-galley as a testbed for what we
need and what will work.

Developments with expl3

Meanwhile, Joseph’s also been writing a new floating-
point calculation module, called I3fp, for expl3. This
module allows manipulation and calculation of numbers
with a much larger range than TEX allows naturally.
The 13fp module has already been utilised in the xcoffin
code for calculatations such as coordinate rotations and
intersection points of vectors.

The modules [3io and I3file have been revised, re-
thinking the way that read and write streams are dealt
with. TEX has a hard limit of sixteen input and output
streams open at any one time, and the new implemen-
tation for expl3 provides more flexibility in how they
are allocated; there’s now much less chance of running
into a ‘No room for a new \read (or \write) error.

Sometimes we discuss ideas for expl3 that don’t end
up making it into the final code. One example of this
is the concept of having ‘local registers’ for integers,
boxes, and so on, that do not survive outside of the
group they are defined in (in contrast to Plain TgX
and IXTEX, where allocators such as \newcount and
\newbox are always global). Despite the scope for some
small benefit, we decided that the extra complexity
that the additional functions required, in both syntax
and documentation, was not justified.

TUG 2010 reflections

Our interpretation of the broad themes discussed at
the conference are that TEX-based systems are still
thriving and there are some big problems to solve with
robust solutions to transform KTEX source, including
mathematics, into a form such as HTML. While there
are big pushes for standardising various aspects of the
IXTEX syntax, we also believe that it is N TEX’s very
flexibility—its inherently non-standardised markup—
that has allowed it to survive for so many years. There
is a delicate trade-off here between moving forward into
more standards-based territory while also retaining the
extensibility of the third-party package system.

IATEX3 News, and the IATEX software, are brought to you by the IATEX3 Project Team; Copyright 2010, all rights reserved.

TUGboat, Volume 31 (2010), No. 3

From \newcommand to \NewDocumentCommand
with xparse

Joseph Wright
Abstract

The xparse package provides a new method for creat-
ing document macros, moving beyond \newcommand.
With xparse it is possible for ordinary IATEX users to
create functions with multiple optional arguments,
stars and mixtures of these. This brief article high-
lights using the xparse approach for the K TEX user
(as distinct from the WTEX programmer).

1 Introduction

In recent articles, I've been discussing how some of
the ideas that the IATEX3 Project have developed
can be used by IXTEX programmers today. However,
most users of IATEX don’t want to deal with the
programming side: they just want to use IMTEX. The
existing WTEX3 packages can already offer benefits
directly to IXTEX users. Here, I want to show how the
xparse package (KTEX3 Project, 2010) can be used
to replace \newcommand with a much more powerful
way of creating commands for day-to-day IMTEX use.
Before getting started, let me pose the ques-
tion ‘Why would you want to replace \newcommand?’
With \newcommand, you can make a macro that takes
a number of mandatory arguments, or a macro where
the first argument is optional and in square brackets,
but that is it as far as variation goes. Anything else
then needs the use of TEX programming or internal
ITEX 2 macros: not really helpful for end users.
The macros that \newcommand creates are also ‘fra-
gile’. This shows up where you need to \protect
things, which can be very confusing. Macros created
using xparse are robust (i.e. not ‘fragile’), and are
therefore reliable in places like section headings.

2 Getting started with xparse

The xparse package is part of a larger bundle of
material (expl3 and xpackages) which the TEX3
Project has released to CTAN for general use and
distribution. As such, it is included in MiKTEX 2.7,
TEX Live 2009, and later releases. If you are using
an older TEX distribution you can download both
expl3 and xpackages from CTAN, ready to install.
xparse can be loaded as usual for BTEX 2¢:

\usepackage{xparse}

It adds a number of new macros to KTEX, but here
T’ll discuss just a few. The main one I'll be using is
\NewDocumentCommand, which is the IJATEX3 version
of KTEX 2¢’s \newcommand.

195

3 Macros with no arguments

The simplest type of macro is one with no arguments
at all. This isn’t going to show off xparse very much
but it’s a starting point. The standard ETEX 2¢
method to make a macro with no arguments at all is

\newcommand\NoArgs{Text to insert}
which with xparse would instead read
\NewDocumentCommand\NoArgs{}{Text to insert}

That does not look too bad, I hope. Notice that I've
got an empty set of braces in the xparse case: this
is where the arguments for the new macro would
be listed. With \NewDocumentCommand there always
has to be a list of arguments, even if it is empty.
That’s in contrast with the \newcommand approach,
where we only need to mention arguments when there
are any.

4 Macros with simple mandatory
arguments

The most common type of argument for a macro is
a mandatory one. With \newcommand, we’d give a
number of arguments to use:

\newcommand\OneArg[1]{Text #1}
\newcommand\TwoArgs [2] {Text #1 and #2}

\NewDocumentCommand is a bit different. Since it
can work with different types of arguments, each is
individually specified with a letter. A mandatory
argument is ‘m’, so we’d need
\NewDocumentCommand\OneArg{m}{Text #1}
\NewDocumentCommand\TwoArgs{mm}{Text #1 and #2}

This is still pretty similar to \newcommand: the useful
stuff starts when life gets a little more complicated.

5 Macros with one or more optional
arguments in square brackets

To get something clever out of xparse, the arguments
need to be a little more varied than we’ve seen so
far. Let’s look at optional arguments, which BTEX
puts in square brackets. If I want the first argument
to be optional, then \newcommand can help:
\newcomand\OneOpt0£fTwo [2] []

{Text with #2 and perhaps #1}
\newcomand\OneOpt0fThree [3] []

{Text with #2, #3 and perhaps #1}

If I want anything else, I'm on my own. First, let’s do
the above examples using xparse. There, an optional
argument in square brackets, as in \newcommand, is
specified by ‘0’ followed by {}:
\NewDocumentCommand\OneOpt0fTwo{0{}m}

{Text with #2 and perhaps #1}
\NewDocumentCommand\OneOptOfThree{0{}mm}

{Text with #2, #3 and perhaps #1}

From \newcommand to \NewDocumentCommand with xparse

196

How about two optional arguments? You can’t
do this with \newcommand. Although it is provided
by add-ons like the twoopt package (Oberdiek, 2010),
xparse is overall much more flexible. All we need to
do is use two 0{} statements.
\NewDocumentCommand\TwoOpt0fThree{0{}0{}Im}

{Text with #3 and perhaps #1 and #2}

Then we can do:
\TwoOptOfThree{Mandatory}
\TwoOpt0fThree [Optionall] {Mandatory}

\TwoOpt0fThree [Optionall] [Optional2] {Mandatory}
\TwoOptO0fThree [] [Optional2]{Mandatory?}

(You can’t give only the second optional argument:
you still need an empty first one.)

What if we want a default value for the optional
argument? With \newcommand, that would be

\newcommand\OneOptWithDefault [2] [myval]
{Text using #1 (could be ‘myval’) and #2}

This is where the braces come in: whatever we put
inside the braces becomes the default value.
\NewDocumentCommand\OneOptWithDefault
{0{myvallm}
{Text using #1 (could be ‘myval’) and #2}
The same idea applies to each optional argument:
whatever is in braces after the 0 is the default value.

6 More complicated optional values

You might be wondering why we need the {} after
0 when there is no default value: why not just o?
Well, there is o as well, but it’s a bit different. Un-
like \newcommand, \NewDocumentCommand can tell
the difference between an optional argument that
is not given and one that is empty. To do that, it
provides a test to see if the argument is empty:
\NewDocumentCommand\OneOpt0fTwoWithTest{om}
{\IfNoValueTF{#1}
{Do stuff with #2 only}
{Do stuff with #1 and #2}}

Don’t worry if you forget to do the test: the special
marker that is used here will print ‘~-NoValue-’ as a
reminder!

Sometimes you might want two different op-
tional arguments, and be able to tell which is which.
This can be done by using something other than
square brackets, often angle brackets (< and >). We
can do that using the letter 4 (or D if we give a
default).

\NewDocumentCommand\TwoTypes0f0pt{D<>{}0{}m}
{Text using #1, #2 and #3}

What input syntax does this recognize? Let’s look
at some examples:

Joseph Wright

TUGDboat, Volume 31 (2010), No. 3

% One mandatory

\TwoTypesOfOpt{text}

% A normal optional

\TwoTypes0£f0pt [text] {text}

% A special optional

\TwoTypes0fOpt<text>{text}

% Both optionals
\TwoTypes0fOpt<text>[text] {text}

How did that work? The first two characters after
the D are used to find the optional argument, so in
this case < and >. The same could be done with (
and), or almost anything else you fancy.

Another common idea in ITEX is to use a star
to indicate a special variant of a macro. Creating
those with \newcommand is difficult, but it is easy
with \NewDocumentCommand:
\NewDocumentCommand\StarThenArg{sm}

{\IfBooleanTF#1

{Use #2 with a star}

{Use #2 without a star}}
Here, ‘s’ represents a star argument. We see that it
ends up as #1, while the mandatory argument is #2.
We also need a test to determine if there is a star
(\IfBooleanTF). This doesn’t mention stars as the
test can be used for other things.

7 Summary

There is more to xparse than I'’ve mentioned here,
but I hope that this gives a flavour of what it can be
useful for. To get more flexibility there is a bit more
to think about compared to \newcommand, but the
overall consistency is hopefully worth it. By using
xparse a whole range of argument arrangements can
be supported without needing to know any KTEX
internal functions. This makes the process of creating
commands much clearer.

References

IXTEX3 Project. “The xparse package: Generic doc-
ument command processor”. Part of the xpack-
ages bundle, mirror.ctan.org/macros/latex/
contrib/xpackages, 2010.

Oberdiek, Heiko. “The twoopt package”. Part of
the oberdiek bundle, mirror.ctan.org/macros/
latex/contrib/oberdiek, 2010.

¢ Joseph Wright

Morning Star

2, Dowthorpe End

Earls Barton

Northampton NN6 ONH

United Kingdom

joseph.wright (at) morningstar2
dot co dot uk

TUGboat, Volume 31 (2010), No. 3

Tagged PDF in ConTEXt
Hans Hagen

1 Introduction

Occasionally users asked me if ConTEXt can produce
tagged PDF and the answer to that has been: I'll
implement it when I need it. However, users tell
me that publishers more and more demand tagged
PDF files, although one might wonder what for, ex-
cept maybe for accessibility. Another reason for not
having spent too much time on it before is that the
specification was not that inviting.

At any rate, when I saw Ross Moore! presenting
tagged math at TUG 2010, I decided to look up the
spec once more and see if I could get into the mood
to implement tagging. Before I started it was already
clear that there were a couple of boundary conditions:

e Tagging should not put a burden on the user
but users should be able to tag themselves.

e Tagging should not slow down a run too much;
this is no big deal as one can postpone tagging
till the last run.

e Tagging should in no way interfere with type-
setting, so no funny nodes should be injected.

e Tagging should not make the code look worse,
neither the document source, nor the low level

ConTEXt code.

And of course implementing it should not take
more than a few days’ work, certainly not in an
exceptionally hot summer.

You can ‘google’ for one of Ross’s documents
(like DML_002-2009-1_12.pdf) to see how a docu-
ment source looks at his end using a special version of
pdfTEX. However, the version on my machine didn’t
support the shown primitives, so I could not see what
was happening under the hood. Unfortunately it is
quite hard to find a properly tagged document so
we have only the reference manual as starting point.
As the pdfTEX approach didn’t look that pleasing
anyway, I just started from scratch.

Tags can help Acrobat Reader when reading out
the text aloud. But you cannot browse the structure
in the no-cost version of Acrobat and as not all users
have the professional version of Acrobat, the fact that
a document has structure can go unnoticed. Add to
that the fact that the overhead in terms of bytes is
quite large as many more objects are generated, and
you will understand why this feature is not enabled
by default.

1 He is often exploring the boundaries of PDF, Unicode
and evolving techniques related to math publishing so you’d
best not miss his presentations when you are around.

197

=8 ags
E|<j <document>
=} O <division> frontpart
= o <structure> chapter
El O <structuretitle>
=d One
=] O <structurecontent>
EO <paragraph>
%§ We thrive in information--thick worlds because of ...
E|<j <list> itemize
El O <listitem:>
<j <listtag>
7 <listcontent>
= first
O <listitem:>
EO <paragraph=
4§ The Earth, as a habitat for animal life, is in old ...
El O <description> whatever
O <descriptiontag>
<7 <descriptioncontent>
EIO <division> bodypart
=] O <structure> chapter
E|<j <structurenumber>
w1
El O <structuretitle>
= Two
El O <structurecontent>
E|<j <list> itemize
B <listitem>
§ <listtag>
O <listcontent>
& <listitem>
O <structure> chapter
O <structure> chapter

Figure 1: A tag list in Acrobat.

2 Implementation

So, what does tagging boil down to? We can best
look at how tagged information is shown in Acrobat.
Figure 1 shows the content tree that has been added
(automatically) to a document while figure 2 shows
a different view.

In order to get that far, we have to do the
following:

e Carry information with (typeset) text.

e Analyse this information when shipping out
pages.

e Add a structure tree to the page.

e Add relevant information to the document.

That first activity is rather independent of the
other three and we can use that information for other
purposes as well, like identifying where we are in the
document. We carry the information around using
attributes. The last three activities took a bit of

Tagged PDF in ConTEXt

198 TUGDboat, Volume 31 (2010), No. 3

=1 tagged-003.pdf
EHE Pagel
¥ [1] One
¢ [2] We thrive in information--thick worlds because of ...
- e
¢ 4] first
& 0.
% [6] second
=¥ [7] TheEarth, as a habitat for animal life, is in old ...
% [8] whocares
¢ [9] Coming back to the use of typefaces in electronic ...
2 [F Page2
5 Page3
B [F Paged
5 Pages

2 ¢ thrive in information—thick worlds because of our marvelous and everyday ca-
pacity to select, edit, single out. structure. highlight, group. pair. merge, harmo-
nize, synthesize, focus. organize. condense. reduce, boil dewn, choose, categorize.
catalog, classify, list. abstract, scan, look into, idealize, isolate, discriminate, dis-
tingnish, sereen, pigeonhole, pick over, sort, integrate. blend, inspect, filter, lump,
skip. smooth, chunk, average, approximate, cluster, aggregate;. outline, summarize,
itemize, review, dip inte, flip through, browse, glance into, leaf through, skim, re-
fine, enumerate, glean, synopsize. winnow the wheat from the chaff and separate the
sheep from the goats.

-

fo=

—

o

9 Earth, as a habitat for animal life. is in old age and has a fatal illness, Several,
i fact, [t would be happening whether humans had ever evolved or not. But our

presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day — and we humans are the cigarettes.

8 10CATES

ming back to the use of typefaces in electronic publishing;

any of the new typographers receive their knowledge and in-
formation about the rules of tvpegraphy from books. from com-
puter magazines or the instruction manuals which they get with
the purchase of a PC or software. There is not so much basic
instruetion, as of now. as there was in the old days, showing
the differences between good and bad typographic design. Many
people are just fascinated by their PC’s tricks, and think that
a widely—praised program, called up on the screen, will make
everything automatic from now on.

Figure 2: Acrobat showing the tag order.

experimenting mostly using the “Example of Logical

Structure” from the PDF standard 32000-1:2008.
This resulted in a tagging framework that uses

explicit tags, meaning the user is responsible for the

tagging:

\setupstructure [state=start,method=none]
\starttext
\startelement [document]

\startelement [chapter]

\startelement [p] \input davis \stopelement\par
\stopelement

\startelement [chapter]
\startelement [p] \input zapf \stopelement\par
\startelement [whatever]
\startelement [p] \input tufte \stopelement\par
\startelement [p] \input knuth \stopelement\par
\stopelement
\stopelement

\stopelement
\stoptext

Since this is not much fun, we also provide an
automated variant. In the previous example we

Hans Hagen

explicitly turned off automated tagging by setting
method to none. By default it has the value auto.

\setupstructure [state=start]
% default is method=auto

\definedescription[whatever]
\starttext
\startfrontmatter
\startchapter[title=0ne]
\startparagraph \input tufte \stopparagraph
\startitemize
\startitem first \stopitem
\startitem second \stopitem
\stopitemize
\startparagraph \input ward \stopparagraph
\startwhatever {Hermann Zapf} \input zapf
\stopwhatever
\stopchapter
\stopfrontmatter

\startbodymatter

If you use commands like \chapter you will
not get the desired results. Of course these can be

TUGboat, Volume 31 (2010), No. 3

supported but there is no real reason for it, as in
MKIV we advise using the start—stop variant.

It will be clear that this kind of automated
tagging brings with it a couple of extra commands
deep down in ConTEXt and there (of course) we use
symbolic names for tags, so that one can overload
the built-in mapping.
\setuptaglabeltext [en] [document=text]

As with other features inspired by viewer func-
tionality, the implementation of tagging is indepen-
dent of the backend. For instance, we can tag a
document and access the tagging information at the
TEX end. The backend driver code maps tags to
relevant PDF constructs. First of all, we just map
the tags used at the ConTEXt end onto themselves.
But, as validators expect certain names, we use the
PDF rolemap feature to map them to (less interest-
ing) names. The next list shows just a few of the
currently used internal names, with the PDF ones
between parentheses.

construct (Span), delimited (Quote),

delimitedblock (BlockQuote), description (Div),

tabulaterow (TR), verbatim (Code),

verbatimblock (Code), verbatimline (Code).
So, the internal ones show up in the tag trees as
shown in the examples but applications might use
the rolemap which normally has less detail.

Because we keep track of where we are, we can
also use that information for making decisions.
\doifinelementelse{structure:section}

{yes} {no}
\doifinelementelse{structure:chapter}

{yes} {no}
\doifinelementelse{division:*-structure:chapter}

{yes} {no}
\doifinelementelse{division:*-structure:*}

{yes} {no}

As shown, you can use * as a wildcard. The
elements are separated by -. If you don’t know what
tags are used, you can always enable the tag related
tracker:

\enabletrackers [structure.tags]

This tracker reports the identified element chains
to the console and log.

3 Special care

Of course there are a few complications. First of all
the tagging model sort of contradicts the concept
of a nicely typeset document where structure and
outcome are not always related. Most TEX users
are aware of the fact that TEX does not have space
characters and does a great job on kerning and hy-
phenation. The tagging machinery on the other hand

199

uses a rather dumb model of strings separated by
spaces.? But we can trick TEX into providing the
right information to the backend so that words get
nicely separated. The non—optimized function that
does this looks as follows:

function injectspaces(head)
local p
for n in node.traverse(head) do
local id = n.id
if id == node.id("glue") then
if p and p.id == node.id("glyph") then
local g = node.copy(p)
local s = node.copy(n.spec)
g.char, n.spec = 32, s
p.next, g.prev = g, p
g.next, n.prev =n, g
s.width = s.width - g.width
end
elseif id == node.id("hlist")
or id == node.id("vlist") then
injectspaces(n.list,attribute)
end
p=n
end
end

Here we squeeze in a space (given that it is in
the font which it normally is when you use ConTEXt)
and make a compensation in the glue. Given that
your page sits in box 255, you can do this just before
shipping the page out:

injectspaces(tex.box[255] .1ist)

Then there are the so-called suspects: things
on the page that are not related to structure at all.
One is supposed to tag these specially so that the
built—in reading equipment is not confused. So far
we could get around them simply because they don’t
get tagged at all and therefore are not seen anyway.
This might well be enough of a precaution.

Of course we need to deal with mathematics.
Fortunately the presentation MathML model is rather
close to TEX and so we can map onto that. After all
we don’t need to care too much about back-mapping
here. The currently present code is rather exper-
imental and might get extended or thrown out in
favour of inline MathML. Figure 3 demonstrates
that a first approach does not even look that bad. In
future versions we might deal with table-like math
constructs, like matrices.

This is a typical case where more energy has to
be spent on driving the voice of Acrobat but I will
do that when we find a good reason.

2 The search engine on the other hand is rather clever on
recognizing words.

Tagged PDF in ConTEXt

200

=] @ Tags
E!O <document>
O <verbatim> tagged
E7 <math>
EO “mrows
B <mi>
O <mo>
E|<j <msup>
EO <Mmrows
O <mo=
o <msup>
O <mo>
EO <mroot>
O <mn>
EO <Mrows>
O <mi>
B <mi>
O <mo>
E|<j <mrows
E‘O <mfrac»
EO <mrows
EIO <mi>
= A
O < mrows
O <mo>
O <mo>
O <mn>

TUGDboat, Volume 31 (2010), No. 3

$8 v = \left(x72 + ‘\root{3Mof{ax + {{bM\over{3}}} \right) - 2 $3%

— 2
y— (T} 3 'I‘m‘+ b)
=1 - \,." 8 3

Figure 3: Experimental Presentation MathML-based tagging.

As mentioned, it will take a while before all
relevant constructs in ConTEXt support tagging, but
support is already quite complete.

4 Conclusion

Surprisingly, implementing all this didn’t take that
much work. Of course detailed automated structure
support from the complete ConTEXt kernel will take
some time to get completed, but that will be done
on demand and when we run into missing bits and
pieces. It’s still not decided to what extent alternate

representations and alternate texts will be supported.

Experiments with the reading-aloud machinery are
not satisfying yet but maybe it just can’t get any
better. It would be nice if we could get some tags
being announced without overloading the content,
that is: without using ugly hacks.

And of course, code like this is never really
finished if only because PDF evolves. Also, it is yet
another nice test case and torture test for LuaTEX
and it helps us to find buglets and oversights.

Hans Hagen

5 Some more examples

In ConTEXt we have user definable verbatim environ-
ments. As with other user definable environments
we show the specific instance as comment next to
the structure component. See figure 4. Some exam-
ples of tables are shown in figure 5. Future versions
will have a bit more structure. Tables of contents
(see figure 6) and registers (see figure 7) are also
tagged. (One might wonder what the use is of this.)
In figure 8 we see some examples of floats. External
images as well as MetaPost graphics are tagged as
such. This example also shows an example of a user
environment, in this case:
\definestartstop[notabene] [style=\bf]

In a similar fashion, footnotes (figure 9) end up
in the structure tree, but in the typeset document
they move around (normally forward when there is
no room).

¢ Hans Hagen
Pragma ADE
The Netherlands
http://luatex.org

TUGboat, Volume

1 chapter

test oeps test whow test

Test

31 (2010), No. 3

=& fags
=4 <document>
ER;,;?] <structure> chapter
@ <structurenumber>
El-g <structuretitle>
= aﬁ <structurecontent>
IE!@; <paragraph>
W test
Bl <verbatim>
=4 oeps
W test
=] (5 <construct> notabene
= whow
B test
E@ <verbatim> typing
W test
B <verbatim> TEX
% \whatever[goes]{ here}

Figure 4: Verbatim, including dedicated instances.

=, E Tags
E-g <document>

test 11|test 12|
test 21 [test 22

test 33

test Coming bacld
new typograg
typography fi
which they g
sic instrictioy
between gooc
by their PC's
the screen, w
test Coming back]
new typograf]
typography f
which they g
sic instriction
between gooc
by their PC'
the screen, w

@ =tr>
B @ <tr>

=} g <tabulate>
B <rows

B {;;3 <row>
@ <row>
g;‘i <rows
B <row>

= \3 <table>

B <trs

Bl <t
B test11

B4 <id>

ablishing: many of the
ation abour the rules of
the instruction manuals
['here is not so much ba-
showing the differences
ople are just fascinated
program. called up on
= @ <cell> on.

o test iblishing: many of the
B <cell> tion about the rules of
the instruction mannals
['here is not so much ba-
showing the differences
ople are just fascinated
program. called np on
on.

Figure 5: Natural tables and the tabulate mechanism

are both supported.

201
= E] Tags
E@ <document>
E4F <structures title
B4 <structuretitles
Contents Bl <structurecontents
4 <list>
1 One EHgf «lictitem> chapter 3
1.1 alpha B <listtag> 2
12 ‘heta 1 2
1.3 gamma B¢ <listcontent> 2
14 delta & One 2
B <listpage>
B2

[+ @ <listitem> section

§F <listitem> section

=i <listitem> section

2 <§ <listitem> section
E}@ <structure> chapter

Figure 6: Tables of contents with specific entries
tagged.

= Tags
B <document>
(3 <division> frontpart
O <division> bodypart
E O <division> backpart
El O <structures title
o < <structuretitle>

Index

: 2

one 1, 2 E‘O <structurecontent>

t E‘O <register> index
two 1,2 B4 <registersection>

= O <registertag>

o
= O <registerentries>
=7 <registerentry>
B¢ one
=47 <registerpages>
El O <registerpage=
= %
=] {5 <registerpage=
=

4 <registersection>

Figure 7: A detailed view of registers is provided.

Tagged PDF in ConTEXt

202

E @ Tags
EO <document>
EO <structure> chapter
O <structurenumber>
O <structuretitle>
=) O <structurecontent>
EO <paragraph>
5§ Let's see what a user defined command does:
EO <construct> notabene
B whow
= A
El O <float> figure
= O <floatcontent>

1 chapter

¢ a simple graphic
EO <floatcaption>

EIO <floattag>
% Figure1l
EIO «floattext>
W test
O <float> figure
=} O <float> figure
= O <floatcontent=
EIO <image>
%# PathPathPath
O <floatcaption>
EO <mpgraphic>
¥# Path
E147 <paragraph>
¥ Vet another paragraph.

Yet another paragraph.

TUGDboat, Volume 31 (2010), No. 3

Let’s see what a user defined command does: whow!

a simple graphic

Figure 1.1 test

a simple graphic

Figure 1.2 test

Figure 1.3 test

Figure 8: Float tags end up in the text stream. Watch the user defined construct.

sheep from the

Order | Tags

Content
'%v
B E‘] Tags
= 4{3 <document>
El @ <division> frontpart
El@ <structure> chapter
Q;g <structuretitles
=) ‘{3 <structurecontent>
B4 <paragraph>

s first!
s second

The Earth, as {
in fact. It wou
presence is like
per day — anc

whocares

=g We thrive in information--thick worlds because of ..

Elx’ég?' <itemgroup> itemize
B @ <item>
J <itemtag>
B4 <itemcontent>
i firstl
=] @ <description> footnote
El<F <descriptiontag>
1
E|<é;$ <descriptioncontent>
W test
B a:ga <itermns
B <itemtag>
@ <itemcontent>
< <paragraph>

1
test o
& @ <description> whatever

Figure 9: Footnotes are shown at the place in the input (flow).

Hans Hagen

TUGboat, Volume 31 (2010), No. 3

Introduction to colours in ConTEXt MKiV

Luigi Scarso

Abstract

This paper is a short introduction to colours from
both theoretical and practical points of view. The
last section is devoted to colour in ConTEXt MKIV.

1 Theoretical colours

While light is a well-known physical phenomenon,
its interaction with the human body is still a com-
plex subject. An important part of this complexity
is due to the eyes being sensitive to a narrow part
of the spectrum in a way that is neither uniform
nor linear with wavelength; they transmit their sig-
nals to the brain by the optic nerves where they are
“elaborated” to obtain a stereoscopic colour image.

Leaving out the three-dimensional aspect of vi-
sion, the human eye has two groups of specialised
cells: the cones, which show three peaks of sen-
sitivity around 420-440 nm (“blue”), 530-540 nm
(“green”) and 560-580 nm (“red/orange”); and the
rods, which show a peak around 490-495 nm and
are sensitive to low brightness. The fundamental
law is empirical, due to Hermann Gramann (1809
1877) around 1853 as a result of his experiments with
“pure” colour sources. Graimann was able to mea-
sure the same sensation of a colour C' as a composi-
tion of sensations of 3 primary sources Red, Green
and Blue weighted between 0 and 100. So, if C; and
(5 are two colours such that

Ci=mR+¢G+b6B

1
CQZT2R+92G+b2B ()

then the sensation given by a colour C3 that is a
composition of C; and Cy is

C3=C1+Cs

= (7’1 =+ T’Q)R =+ (91 + gg)G + (bl + bz)B (2)

He also found that some colours Cj matched only if
combined with a primary source:

Cr + R = G + 0;,B (3)
ie.

Cy = -—1:R+ .G + b,B (4)

Figure 1 shows a plot of the RGB colour-matching
functions similar to those calculated from these ex-
periments; we can see the red component is negative.

203

>
i

350 400 450 500 550 600 650 700 750

Figure 1: RGB colour-matching functions. X-axis is
wavelength A (nm). These data were obtained with
a red primary of A = 645.16nm, a green primary of
A = 526.32nm and a blue primary of A = 444.44nm.

Given a colour C' with a spectrum P()) it’s pos-
sible to calculate the components R, G, B with

+oo
R=k P)F(A)dA
0

+oo

G:k/) P\ (5)
0

B:k/’ POBA)AA
0

To avoid calculations with negative numbers and to
make use of these data easier, in 1931 the CIE consor-
tium introduced a linear and non-orthogonal trans-
formation Cy, between RGB colour-match space
and a new XYZ colour-match space called CIE XYZ
1931 where all values are positive. Hence we have
X =Cx-Rie.

X 0.49000 0.31000 0.20000 R
Y| =10.17697 0.81240 0.01063|- |G (6)
Z 0.00000 0.01000 0.99000| |B

As a consequence there is also a new set of colour-
matching functions T(\), g(A), Z(\) (see figure 2) so
that a colour ¢ with spectrum P(A) has the compo-
nents X, Y, Z where

X=k +mpuﬁumx
0

Y=k +mpumumx (7)
0

Z=k +mPMﬁQMA
0

It’s easy to show that for a generic spectrum
P(A) not null (i.e. a visible colour) we always have
X +Y 4+ Z > 0 so it makes sense to define z,y, z as

#H

0.8

0.6

e
b
I

ok .

L4

£ 4
L

Y

¥
0.4 X
X

0.2 N

0 H
350 400 450 500 550 600 650 700 750 800 850

Figure 2: XYZ colour-matching functions per the CIE
Consortium, 1931. X-axis is wavelength A (nm). The
CIE used slightly different virtual (i.e. calculated) pri-
mary sources from figure 1, namely 435.8nm for blue,
546.1nm for green, and 700.0nm for red. Each source
is mathematically a delta (impulsive) function with
amplitude +0.0601, +4.5907 and +1.0000.

X
T Xiv+1z
Y
S S 8
YT Xty 1z (8)
Z
2= =
X+Y+2Z

and hence for all colours we have x +y + 2z = 1,
0<2<1,0<y<10<L 2z <1 This surface
is then contained inside the planex +y+z—1=0
and its vertical projection onto the x-y plane is the
chromaticity diagram whose peculiar shape is some-
times referred as a horseshoe (see figure 3). It’s im-
portant to understand that it describes the complete
gamut of an idealised human eye (it’s also referred to
as the gamut diagram) and it’s independent of any
particular device: all the colours that are visible by
the human eye are inside the chromaticity diagram.
This diagram has several properties:

e a flat and uniform power spectrum E(\) has
coordinates x = 1/3,y = 1/3,z = 1/3.

It’s called the achromatic point F and cor-
responds to a white light that can be used as
a reference;

e there is no triangle with vertices in the gamut
diagram that encloses all of the diagram itself
(i.e. there are not three light sources that can
produce all visible colours);

e given two points in the gamut (i.e. two real
colours) all the colours in the straight line
that joins them can be obtained by mixing
the start and the end colours;

e given x,y,Y it’s possible to calculate X,Y, Z
and vice versa, so that the CIE XYZ 1931
colour space is equivalent to the CIE xyY

TUGboat, Volume 31 (2010), No. 3

:---‘Achromatic -
point E

0.3
0.2 | 4bs

%
01

0 : 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 3: CIE xyY 1931 chromaticity diagram. The
labels are the wavelengths A in nm. The point E (the
achromatic point) has coordinates x = %,y = %; the
colour C' can be seen as a result of mixing two different
sets of monochromatic lights. Also a colour D can be a
mix of the colours Cy and Cs.

1931 colour space.

But probably the most important thing is that for
a given colour, in most cases there are at least two
independent sets of monochromatic lights that give
the same colour perception when mixed (in figure 3
the two sets are (A = 495nm, A = 569nm) and (A =
500nm, A = 575nm)) and this is the best synthesis
of the complexity of the human colour perception.

The CIE XYZ 1931 colour-space has several im-
portant properties, but an important disadvantage
is that it’s still difficult to compute the “difference”
of two colours. In fact, given C; = X3, Y1,2;
and CQ = XQ,}/Q,ZQ then AC = 52(01,02) =
V(X1 = X2)2 + (Y1 = Ya)? + (21 — Z5)? is not ad-
equate for practical purposes. For an effective Eu-
clidean distance, researchers have found more use-
ful non-linear transformations of the CIE XYZ 1931
colour space; one of the most used led to the
CIE L*a*b* 1976 colour-space, with the coordinates
L*, a*, b* given by

v [5 (L)
a*:mm~}(;i>—f<;)} (9)
Z

v [(L)1 (2))

TUGboat, Volume 31 (2010), No. 3

and

Wl

t
1 /29 2t 4
3 (6) + 29
and X,,,Y,,, Z, is a reference white point (for exam-
ple, the achromatic point £ mentioned above).

This leads to the important problem of the ref-
erence white point. It’s clear now that under a
monochromatic light the colour perception of a sur-
face is completely different from the perception of
the same surface under a “white light” and hence the
specification of a “white light” is of extreme impor-
tance. It’s also appropriate to consider a reference
white light that mimics the Sun’s daylight, so that
we can consider a sort of natural light. Fortunately,
physics can help with the well-established concept of
black-body.

An ideal black-body is an object that absorbs
all incident electro-magnetic radiations and re-emits
them in a characteristic and continuous spectrum.
The key point is that this spectrum depends only on
the temperature: at room temperature the black-
body radiation is mostly infrared wavelengths (in-
visible to human eyes, which is why the black body
looks black), around 2000 K it is red, around 6000
K white and around 10000 K blue.

Hence it is possible to specify a temperature
that identifies precisely the spectrum of a source light
that gives a characteristic perceptual sensation of
a colour, usually referred as colour temperature T,.
Nevertheless, the measure of this perception is still
subjective, so more precisely the standards talk of
correlated colour temperature (CCT) T,,. The CIE
has specified several of these sources to be used as
“white light” only, and not as a general mechanism
to define a colour; here is an example of these refer-
ences sources:

> (269)3 "

otherwise

ft) =

Source CCT Note

D50 5003 K Daylight, horizon light
D55 5503 K Daylight, midmorning
D65 6504 K Daylight, noon light

D75 7504 K Daylight, north sky

E 5454 K Equal energy

F4 2940 K Fluorescent, warm white

Of course every source is a point on the chro-
maticity diagram (figure 3); for example, D50 =
(0.34567,0.35850) and D65 = (0.31271, 0.32902).

205

2 Practical colours

The colour spaces seen so far are exhaustive and
device independent —and theoretical. Practical de-
vices always have a gamut that is strictly contained
in the CIE xyY 1931 diagram, and in the printing
world what matters is the colour of a surface (usu-
ally a paper) that is determined by the reflection of
the light of a source. Hence there are three effective
way to obtain a colour:

Addition. This is how a monitor (CRT or LCD),
a transmitting medium, works: red, green and blue
pixels are side by side (hence not overlapping) and
each can emit between 0 (off) and 2" (express in a
convenient unit). For example, if we have n = 8 and
hence 28 = 256 levels for each pixel, a colour C can
have RGB components (R,G,B)=(0x1C,0x45,0x3B)
or hexadecimal value 0x1C453B. The colour depth is
8% 3 = 24 bits, hence we have max 224 colours (more
than 16 million). Some RGB colours can be spec-
ified also with 16-bit pixel values (2%, more than
281 - 10'2) or as a real value between 0 and 1 e.g.
(r,g,b)=(0.1,0.2,0.45). It’s important also to
note that digital cameras and scanners store their
data as RGB values (so more bits mean more pre-
cision for image processing) because most modern
consumer transmitting devices share the same basic
technical implementations (i.e. they have almost the
same gamut).

Subtraction. With an ideally white source (1.0,
1.0, 1.0) the reflected colour of a surface (a type
of reflecting media) can be described as (r,g,b)=
(1-c,1-m,1-y), where (c,m,y) synthesise the fil-
tered portion of the spectrum of the ideal white
light. This is how a digital colour printer works:
each dot printed is obtained by an overlapping of
4 dots coloured cyan, magenta, yellow and black
(called the key colour) where each is between 0.0
(not drawn) and 1.0 (fully drawn); the order of
overlapping is also important in industrial printers,
and is usually c,m,y,k. It’s clear that the white
colour r=1.0,b=1.0,g=1.0 is ¢=0.0,m=0.0,y=0.0
which means ‘don’t print anything’ or, better, ‘show
the colour of the surface’ which can be different from
white (that’s why these devices cannot print a white
colour on a black paper). The black component
is essential to ensure correct colours (for example
(c,m,y)=(1.0,1.0,1.0) is usually a dark brown)
hence a theoretical CMY colour is always translated
to a practical CMYK; also common is to express val-
ues as real values between 0.0 and 1.0 or in per-
centages. Another important point is that a CMYK

206

colour is always defined with reference to white light
(e.g. D50) otherwise it makes no practical sense.

Mixing inks. As seen in the colour D of figure 3,
a colour can be a mixing, on a precise type of paper,
of a set of industrial inks (often called spot colours)
taken from a de facto standard colour catalogue in a
precise quantity. This is how an offset press works;
for example, colour PANTONE 567 EC from Pantone
colour bridge coated Euro 1st Edition. The sup-
port is coated paper (can also be uncoated) and the
source light is D50. There can also be RGB colour
that at least gives an idea of the real colour (in this
case 0x1C453B) but this is not always possible: there
are inks without any RGB or CMYK representation.

Thus, every media has its own colour space (i.e. a
specific gamut, a subset of the CIE XYZ 1931 dia-
gram) and a way to walk between them is given by
a ICC colour profile, which is a map between the spe-
cific gamut of the device and a standard colour space
called the Profile Connection Space, that is in turn
based on CIE XYZ 1931 with default source light
D50. The key point is that this PCS colour space
is device-independent, making it possible to com-
pare two different device-dependent colour spaces,
and also to specify a ‘colour rendering style’ of the
device-dependent colour space to match the desired
result. These ‘styles’; called rendering intent, are ab-
solute colorimetric, relative colorimetric, perceptual
and saturation. From ICC specifications, “the col-
orimetric rendering intents operate directly on mea-
sured colorimetric values, though possibly with cor-
rection for chromatic adaptation when the measured
values were not calculated for the D50 PCS illumi-
nant. The other rendering intents (perceptual and
saturation) operate on colorimetric values which are
corrected in an as-needed fashion to account for any
differences between devices, media, and viewing con-
ditions”.
Here is a short list of ICC profiles:

e sRGB_v4_ICC_preference.icc: RGB colour
space. The profile of most of LCDs, scanners
and digital cameras;

e ISOcoated_v2_eci_300.icc: CMYK colour
space. To be used for machine-finished glossy
or matte coated papers. It’s considered a
more or less standard profile (Europe);

e UncoatedFOGRA29.icc: CMYK colour space.
To be used for uncoated papers (Europe);

e GRACoL2006_Coatediv2.icc: CMYK colour
space. To be used for machine-finished glossy
or matte coated papers (USA).

TUGboat, Volume 31 (2010), No. 3

A very useful program to explore the colour profiles
is transicc from little cms, a C library also useful
in implementing a colour management system. Here
is a simple example on how to convert a red RGB
colour C to the equivalent CMYK C7; note the ICC
profiles and the -t0 option that means the rendering
intent is ‘perceptual’:
transicc.exe -isRGB_v4_ICC_preference.icc

-0ISOcoated_v2_300_eci.icc -v3 -tO

LittleCMS ColorSpace conversion calculator ...
Profile:

sRGB v4 ICC preference perceptual intent beta
Output profile:

IS0 Coated v2 300% (ECI)

Enter values, ’q’ to quit

R? 255

G? 0

B? 0

C=0.6210 M=99.6170 Y=89.6544 K=2.6841
[PCS] Lab=(48.3055,86.7471,68.7393)
XYZ=(37.1789,17.0361,0.7712)

It’s worth observing that the theoretical CMYK
colour C9=(0,1.0,1.0,0) has the coordinates
[PCS] Lab=(49.4726,65.9508,52.1581) and thus
AE* = /(L1 — L2)2 + (a1 —a2)? + (b — b2)? =
26.623 while two colours are regarded as identical
if AE* < 2.8.

3 Colours in ConTEXt

The PDF Reference describes three families of colour
spaces:

1. the device colour spaces: DeviceGray,
DeviceRGB, DeviceCMYK;

2. the CIFE base colour spaces: Lab, ICCBased,
CalGray, CalRB;

3. the specials: Pattern, Indexed, Separation,
DeviceN.

In ConTEXt MKIV it’s possible to define a de-
vice colour space with the \setupcolors and
\definecolor macros, as in

\setupcolors[state=start,rgb=yes, cmyk=yes]
\definecolor [BlueGRAY] [s=0.1]
\definecolor [BlueRGB] [r=.1,g=.1,b=1]
\definecolor [BlueCMYK] [c=0.9,m=.0.909,y=0,k=0]
\definecolor[Blue] [r=.1,g=.1,b=1,
c=0.9,m=.0.909,y=0,k=0]
Then we can use it by its name as in \color [Blue]
{I’m blue}. The GRAY colour space is the last
resort, and the RGB colour space has precedence
over CMYK, so Blue is an RGB colour; if we
use rgb=no,cmyk=yes, then Blue is the inverted
CMYK colour (1-r,1-g,1-b), not the one spec-
ified (the same for rgb=yes,cmyk=no), and with

TUGboat, Volume 31 (2010), No. 3

rgb=no, cmyk=no all colours are converted to GRAY.
So, we should pay attention to the colour definitions.
ConTEXt MKIV also manages colour transpar-
ency: in
\definecolor[BlueTrs] [r=.1,g=.1,b=1,t=0.7,
a=normal]
the key t specifies a solid colour with t=1.0 or full
transparency with t=0.0, while the key a is the
transparency alternative method (there are 13 alter-
natives). Still today transparency must be used with
care because printing is not reliable (some printers
simply reject PDFs with these colours even if solid).
For spot colours (the Separation special colour
space) things are a bit more complex: we must en-
sure that the tint is exactly specified by its name
(case and spaces matter!) and associated with a
CMYK reference colour for a low-quality print (just
to see it), hence the two-steps definition:
\setupcolors[state=start,rgb=no,cmyk=yes,
spot=yes,overprint=yes]
\definecolor [Pantone294] [c=1,m=.56,y=0,k=.18]
\definespotcolor [BlueSPOT] [Pantone294]
[p=1,e=PANTONE 294 CV]

The overprint=yes setting ensures that black over-
printing the spot colour will not knock out the
colour.

As of August 2010, ConTEXt MKIV has started
to support the CIE based colour space ICCBased for
RGB, CMYK and GRAY (only) and limited to the
entire document (not for single object colour). An
ICC profile must first be registered into the color-
profiles.xml file by filling these fields (the function
colors.iccprofiles (filename, verbose) in colo-icc.lua
can help here):
filename: the file name of the ICC profile;
colorspace: the colour space of the profile;
class: the device class of the profile (prtr for

printer, mntr monitor, scnr scanner, spac
space);

id: identifier of the measured data (not for the
profile) on which the profile relies; e.g. FO-
GRA39;

info: (optional) descriptive text about the profile;

checksum: md5 checksum of the profile;

version: version number of the profile in hex;

url: url where the profile can be downloaded;

outputcondition: (optional) information about
print technology, paper type and weight.

The profiles for RGB, CMYK and GRAY colour
spaces can be set for the entire document with

\setupcolors[state=start,rgb=yes, cmyk=yes]

\setupbackend [profile={sRGB_v4_ICC_preference.icc,

default_cmyk.icc, default_gray.icc}]

207

Supporting ICCBased colour spaces is part of
wide support for PDF/X specifications, a subset of
full PDF focused on achieving more reliability in
exchanging PDF files by enforcing restrictions; for
example, fonts must all be included. All PDF/X-*
are formalized in ISO standard 15930. The speci-
fications currently under development for ConTEXt
MKIV are PDF/X-1a:2001, PDF/X-1a:2003, PDF/X-
3:2002, PDF/X-3:2003, PDF/X-4, and PDF/X-4p,
where X-1* is more restrictive than X-4*. The latest,
PDF/X-5, is left out.

To enable a format we again use \setupbackend:

\setupbackend[format=PDF/X-4,
profile={sRGB_v4_ICC_preference.icc,
default_cmyk.icc, default_gray.icc},intent=
{IS0 Coated v2 300\letterpercent\space (ECI)}]

Here we specify in profile the ICC profiles of the
colour’s document, while in intent we specify the
ICC profile of the intended output, a coated paper
in this case. This is a feature of PDF/X-4; PDF/X-
1a:2003 permits only CMYK and spot colours.

As final note, it’s important to understand that
PDF/X is a complex subject and ConTEXt MKIV is
not a preflight tool. A PDF made with inclusion of
other PDFs as images are particularly fragile: it is
easy to do with ConTEXt, but can easily lead to an
invalid PDF; for example if the included PDF does
not have all its fonts embedded, or contains an RGB
colour, or a transparency that is prohibited by the
format chosen. So it’s better to have a preflight tool
for checking, and at present only commercial tools
are reliable (yes, room for improvements here).

4 Reference information

o General information: http://en.wikipedia.
org/wiki/International_Commission_on_
Illumination

e A useful link for theoretical information:
http://www.fho-emden.de/~hoffmann/
howww4la.html

e The diagrams were traced with data from:
http://cvrl.ioo.ucl.ac.uk

e ICC information: http://www.color.org

e Useful PDF/X information at the site of the
Ghent PDF Workgroup: http://www.gwg.org

e Implementation of PDF/X in ConTEXt MKIV:
http://wiki.contextgarden.net/PDFX

e More information about colours in ConTEXt:
http://wiki.contextgarden.net/Colors,
http://wiki.contextgarden.net/
Reference/en/definecolor

o Luigi Scarso
luigi.scarso (at) gmail dot com

208

Generate TEX documents using pdfscript
Oleg Parashchenko

Abstract

Generation of correct TEX files is actually a hard
task with a number of peculiarities. Therefore, it is
better to delegate this task to some library or tool.
A tool already exists (TEXML); now it’s time for a
library.

The library pdfscript helps to create TEX files
from Python. The API follows the IXTEX model: it
represents environments, commands and their pa-
rameters as calls of the corresponding functions in
the library.

The pdfscript interface can be used as a ba-
sis for object-oriented abstractions of document ele-
ments, so that the users may create PDF documents
having no idea that TEX is inside.

1 Introduction

Automatic generation of TEX files is much harder
than one might expect. Here are some cases where
bugs are possible and attention is required:

e Special symbols should be escaped

e Non-latin letters should be handled

e A space after command names may be required:
\it text, not \ittext

e An empty group after a command may be re-
quired: \PDF{} file, not \PDF file

e Opening and closing curly braces should be bal-
anced

e It is necessary to comment-out empty lines to
avoid false paragraph breaks (and do you know
for sure what an empty line is?)

It is easy to code all these requirements, but at
the next level, when we have several different TEX-
generating programs, we would like to put the code
into a common library. I tried it and found that
this is a challenging task, which required a lot of
thinking and several attempts before the result was
satisfactory.

To compare the result with existing approaches,
I asked about related work in the newsgroup comp.
text.tex [3]. Surprisingly, the only alternatives
are the use of the “print” statements and templates.
When a programmer generates TEX files, he surely
develops some helper functions, but so far nobody
has shared his experiences, or at least I failed to find
such work.

In this article, I describe my steps in designing
a TEX generation library named pdfscript. Then
I use the library to re-typeset an excerpt from “Es-
sential IXTEX” by Jon Warbrick [5] and show the

Oleg Parashchenko

TUGboat, Volume 31 (2010), No. 3

artifacts of refactoring the code. Finally, I make a
summary of the pdfscript API and speculate on
further development.

The “proof of the concept” implementation of the
pdfscript library and the examples from this article
are available from http://uucode.com/download/
pdfscript-article-examples-20100909.tar.gz.
Despite its experimental status, the code is ready for
use by early adopters.

2 Designing the interface

This section describes the steps of the design process.

2.1 Sample TEX document

Let’s start with a very simple document, which con-
tains only a setup, a title and a few paragraphs. (For
editorial reasons, the boilerplate text is corrupted by
introducing line breaks.)

\documentclass [adpaper]{article}
\usepackage [utf8]{inputenc}

\usepackage [T1]{fontenc}

\begin{document}

\section{De finibus bonorum et malorum}
Lorem ipsum dolor sit amet, consetetur sad
ips cing elitr, sed diam nonumy eirmod tem
por invidunt ut labore et dolore...

Duis autem vel eum iriure dolor in hendrer
it in vulputate velit esse molestie conseq
uat, vel illum dolore eu feugiat...

Ut wisi enim ad minim veniam, quis nostrud
exerci tation ullamcorper suscipit loborti
s nisl ut aliquip ex ea commodo...
\end{document}

2.2 TEXML version

The first step in the search for an API was to create
a TEXML representation. To learn TEXML, visit
the homepage of the project —http://getfo.org/
texml —or read my TUGboat article [4]. For the
purposes of this paper, it is enough to know the
basics:

e TEXML is an XML format

e The root element is named TeXML

e A TEX command is represented by an element
cmd with the attribute name:

\command [options]{parameter}

<cmd name="command">
<opt>options</opt>
<parm>parameter</parm>
</cmd>

TUGboat, Volume 31 (2010), No. 3

e If a command or an environment has options or
parameters, they are represented by elements
opt and parm, as in the example above.

e An environment is represented by an element
env with the attribute name:

\begin{itemize}

\end{itemize}

<env name="itemize">

</env>

This knowledge is enough to rewrite the sample
document in the TEXML format:

<TeXML>
<cmd name="documentclass">
<opt>adpaper</opt><parm>article</parm>
</cmd>
<cmd name="usepackage">
<opt>utf8</opt><parm>inputenc</parm>
</cmd>
<cmd name="usepackage">
<opt>T1</opt><parm>fontenc</parm>
</cmd>
<env name="document">
<cmd name="section">
<parm>De finibus bonorum et..</parm>
</cmd>
<TeXML>Lorem ipsum dolor sit amet, con
setetur sadipscing elitr, sed diam n
onumy eirmod tempor invidunt ut 1...
</TeXML>
<cmd name="par"/>
<TeXML>Duis autem vel eum iriure dolor
in hendrerit in vulputate velit esse
molestie consequat, vel illum dol...
</TeXML>
<cmd name="par"/>
<TeXML>Ut wisi enim ad minim veniam, q
uis nostrud exerci tation ullamcorpe
r suscipit lobortis nisl ut aliip...
</TeXML>
</env>
</TeXML>

The rewriting process is mostly straightforward,
but two points require additional comments.

First, the use of the element TeXML not only
as the root, but also as a container for the text.
It is needed here only to satisfy my XML-related
experience, which recommends avoiding mixing text
and elements without a reason.

Second, in the TEX version, the empty lines give
implicit \par commands, while TEXML version uses

209

par directly. It is possible to generate empty lines,
but this is bad style when using TEXML. And by the
way, I dislike the version with par too. In my docu-
ments I prefer to wrap paragraphs to environments
and hide \par in the environment definitions.

2.3 Direct Python counterpart of the
TEXML version

The TEXML version has structured the document,
and now it is easy to re-write it in Python:
import pdfscript
from pdfscript import opt, parm
doc = pdfscript.newdoc()
doc.cmd(’documentclass?,
opt (’adpaper’), parm(’article’))
doc.cmd (’usepackage’,
opt (’utf8’), parm(’inputenc’))
doc.cmd(’usepackage’,
opt(°T1’), parm(’fontenc’))
indoc = doc.env(’document’)
indoc.cmd(’section’,
parm(’De finibus bonorum et malorum’))
indoc.text(’Lorem ipsum dolor sit amet, co
nsetetur sadipscing elitr, sed diam...’)
indoc.cmd(’par?’)
indoc.text(’Duis autem vel eum iriure dolo
r in hendrerit in vulputate velit e...?’)
indoc.cmd(’par?)
indoc.text(’Ut wisi enim ad minim veniam,
quis nostrud exerci tation ullamcor...’)
h = open(’30_direct.texml’, ’w’)
doc.get_root() .writexml (h)
h.close()

The first line instructs Python to load the library
pdfscript, the second line allows using the short
names opt and parm instead of the fully qualified
pdfscript.opt and pdfscript.parm.

Then we create a document and put the com-
mands and the environment into it. The content of
the article is put inside the environment document
by attaching the commands to the variable indoc,
which is associated with the environment.

Finally, we get the root node of the constructed
XML document and save it into the file.

2.4 Improved Python code

Immediate exprerience with the code above suggests
the following improvements:

e In the most cases, the arguments of cmd are
the parameters for the command, therefore it is
logical to make parm calls implicit.

e Instead of cmd(’name’, ...) or env(’name’,
...), the alias name (’ . ..?) looks better.

Generate TEX documents using pdfscript

210

e The functions could accept more than one argu-
ment.

Implementing these ideas, we get the following
Python code:
import pdfscript
from pdfscript import opt, par
doc = pdfscript.newdoc()
doc.documentclass (opt (’adpaper’), ’article’)
doc.usepackage (opt (*utf8’), ’inputenc’)
doc.usepackage (opt (’T1’), ’fontenc’)
indoc = doc.document ()
indoc.section(’De finibus bonorum et ...?%)
indoc.add(’Lorem ipsum dolor sit amet, con
setetur sadipscing elitr, se...’, par())
indoc.add(’Duis autem vel eum iriure dolor
in hendrerit in vulputate ve...’, par())
indoc.text (°Ut wisi enim ad minim veniam,
quis nostrud exerci tation u...’, par())
h = open(’50_final.texml’, ’w’)
doc.get_root() .writexml (h)
h.close()

3 Observations on a real world example

To test if the pdfscript library is powerful enough,
I tried to reproduce some real life IITEX with it.
After wandering in the doc directory on CTAN, I
decided to re-typeset the document “Essential KXTEX”
[5]. Surprisingly, the task was challenging. Even
though the IXTEX code contained little markup, it
was enough to clutter the Python counterpart. To
introduce clarity to the code, a redesign was required.
After some thought, the definition of the notion
“clarity” became ambitious: a programmer who has
never heard of KTEX should understand each line of
the code. This approach produced a few artifacts:

e Python document classes
e Python macros
e Python active strings

3.1 Python Document Class

Let’s consider the high-level structure of the “Lorem
ipsum” example:

10 doc = pdfscript.newdoc()
20 doc.documentclass(...)
30 doc.usepackage(...)

40 doc.usepackage(...)

50 indoc = doc.document()
60 indoc.section(...)

70 indoc.add(..., par())

80 indoc.add(..., par(Q))

90 indoc.text(...)

Let me turn into a non-I#TEX programmer and
read this code. Here would be my comments:

Oleg Parashchenko

TUGboat, Volume 31 (2010), No. 3

(10) Ok, create a new default document. (Wrong!)

(20) This line probably defines the layout and for-
matting of the document I'm going to create.
Why not join (10) and (20)?

(30), (40) Some formatting plugins are loaded. WTF
([2])? What is T1? Do I really need these lines?
I do a “Lorem ipsum” example, not something
special. If this trivial test requires some func-
tionality, it should be automatically loaded by
default.

(50) WTF? I've already created the document, why
create it once more?

(60) Good, a section is created. The argument is
the title.

(70) Looks like a paragraph is created. But what is
this par () inside add()? Is it an additional ver-
tical space to separate paragraphs, like pressing
<ENTER> twice in OpenOffice or Word?

(70), (80) Stylistic note. The paragraphs should be-
long to sections, not to the document itself.

Having these remarks in mind, I recoded the
high-level structure in this way:

doc = esla.doc()

sect = doc.section(...)
sect.para(...)
sect.para(...)
sect.para(...)

The only question about this re-worked code
fragment is what does esla in the first line mean. A
programmer can guess that it is some Python pack-
age which assists in creation of the documents and
hides the formatting in the commands section()
and para(). Correct. For a ITEX user, this package
is a Python version of a document class or a pack-
age. The name esla is an abbreviation for “Essential
BTEX"—I'm leaving “Lorem ipsum” test and starting
work on the challenging example.

3.2 Python macros

After the high-level structure is improved, time to
switch to the inline markup. Here is a fragment of
the source code:

You then get \LaTeX{} to process the file,
and it creates a new file of typesetting c
ommands; this has the same name as your fi
le but the ‘‘\fn{.TEX}’’ ending is replace
d by “‘\fn{.DVI}’’. This stands for ‘{\it
D\/}e{\it v\/}ice {\it I\/}ndependent’

The direct transcription is a nightmare:

sect.para(
’...You then get ’,
cmd(’LaTeX’?),

TUGboat, Volume 31 (2010), No. 3

’ to process the file, and it creates a
new file of typesetting commands; this
has the same name as your file but the’,
verbatim(’® ¢¢’),
cmd(’fn’, °.TEX’),
verbatim("??"),
’ ending is replaced by 7,
verbatim(?¢¢?),
cmd(’fn’, >.DVI?),
verbatim("??"),
>, This stands for ¢,
group(ecmd(’it’), ’D’, verbatim(’\/?)),
‘e,
group(cmd(’it’), ’v’, verbatim(’\/’)),
ice 7,
group(cmd(’it’), ’I’, verbatim(’\/’)),
"ndependent’ ...")

Switching back to code review mode:

e The command LaTeX probably produces the
logo.

e The lines with fn and it produce some format-
ting. But why is the usage different? fn has an
argument, and it is enclosed in a group.

e Well, I think it switches to another formatting
forever and the group limits this forever. But
the construction \/ makes no sense to me.

e There is too much repetition, I don’t like to code
that way.

Unifying the fn and it interface, hiding the
details and removing the repetitions, we get a better
result:

sect.para(

>...You then get ’, cmd(’LaTeX’),

’ to process the file, and it creates a

new file of typesetting commands; this

has the same name as your file but the’,
fn(’.TEX’), ’> ending is replaced by ’,
fn(’.DVI’), °’. This stands for ¢?,
it(’D?), ’e’, it(’v’), ’ice 7,

it(’I’), "ndependent’ ...")

The functions fn and it can be considered
as macros, which are expanded in Python, not in
IATEX itself. Incidentally, pdfscript implements the
\let\def=\undefined idea of Jonathan Fine [1].

3.3 Python active strings

There is still an inconvenience. What’s easy in I TEX:

. before ... \LaTeX{} ... after ...
is being written in Python as:
sect.para(’... before ... ?,

cmd (°LaTeX?),
> ... after ... ?)

211

For one time use, it is ok. But when we have sev-
eral ATEXs in a paragraph, the code looks spaghetti-
ish, syntactically overcomplicated. A simple solution
is to let the computer do the low-level job. We can
write a function subst_latex, which finds the en-
tries of the substring LaTeX in the source text and
substitutes them with the corresponding commands.
With help of this function, the code can be simplified:

sect.para(subst_latex(
>... before ... LaTeX ... after ... ?))

Nearly all the paragraphs of “Essential IXTEX”
contain the logo, therefore it is logical to redefine
the function para, asking it to call subst_latex
automatically. The final code is:

sect.para(

>, .. before ... LaTeX ... after ... ?)

In this code, the string LaTeX can be consid-
ered as an active string (by analogue to the active
characters), expanded in Python.

At this point, the code does not use pdfscript
at all. Instead, it communicates only with the esla
package, which encapsulates not only the formatting
details, but also the details of PDF generation.

4 API reference

The previous sections have given enough examples
to demonstrate how to use the pdfscript library.
Here is a more formal description.

For brevity, instead of fully qualified names like
pdfscript.something I use simple something.

4.1 Module functions

TeXsubdoc newdoc(argl, arg?2, ., argN)

Creates a new in-memory document. If there are any
arguments (of type string or TeXsubdoc), they are
added to the document. The parts of the documents
are constructed with the following functions:

TeXsubdoc cmd(name, argl, arg2, ..., argN)
TeXsubdoc env(name, argl, arg2, ..., argN)
TeXsubdoc opt (argl, arg2, ..., argN)
TeXsubdoc parm (argl, arg2, ..., argN)
TeXsubdoc group (argl, arg2, ..., argN)
TeXsubdoc text (argl, arg2, ..., argN)
TeXsubdoc verbatim (argl, arg2, ..., argN)

These functions create the corresponding ele-
ments in TEXML. The library does not validate
whether a combination of functions makes sense.
Notes on the functions:

e cmd and env require at least one argument (of
type string), which is the name.

e String arguments of cmd are wrapped with im-
plicit calls of parm.

Generate TEX documents using pdfscript

212

e The functions text and verbatim create an el-
ement TeXML. The latter function additionally
sets the element’s attributes in such a way that
the text is passed to TEX without any changes.

4.2 Methods of TeXsubdoc
xml.dom.minidom get_root(self)

Returns an XML subtree associated with the object
self of type TeXMLsubdoc.

TeXMLsubdoc add(self, argl, ., arghN)

Adds subdocuments argX of either type string or
TeXMLsubdoc into the subdocument self. Returns
the reference to the last added subdocument (argN,
possibly cast to the type TeXMLsubdoc).

TeXMLsubdoc cmd (self, argl, ..., argN)

TeXMLsubdoc env (self, argl, ..., argN)
TeXMLsubdoc opt (self, argl, ..., argN)
TeXMLsubdoc parm (self, argl, ..., argN)

TeXMLsubdoc group(self, argl, ..., argN)
TeXMLsubdoc text (self, argl, ..., argN)
TeXMLsubdoc verbatim(self, argl, ., arghN)

The first method is a shortcut for:
self.add(cmd(argl,
In this definition, the object method cmd uses
the module function cmd to create a document frag-
ment, and then calls the object method add to attach

the fragment. The other shortcuts are defined in the
same way.

., argN))

4.3 Aliases

Some commands and environments can be accessed
via aliases: name(’...’) instead of cmd(’name’,
...) or env(’name’, ...). Such aliases are cre-
ated by the following module functions:

register_cmd(name)
register_env(name)

5 Conclusion and further work

Despite having no experience yet of pdfscript use
in a production environment, the experiments so far
already allow us to speculate how this tool affects
different groups: TEX users, TEX-related developers
and the world-outside-TEX.

TEX users can safely ignore pdfscript. It is
dubious to stop typesetting in TEX and start doing
it in Python. As demonstrated by the “Essential
IMTEX” example, such Python-TEX code is rather
unreadable.

I expect that developers writing something-to-
IXTEX converters will find pdfscript useful. The
library allows one to concentrate on the main point of
the program and not worry about generating correct

Oleg Parashchenko

TUGboat, Volume 31 (2010), No. 3

TEX syntax. Further, representing a future TEX
document in a tree simplifies adding refinements,
such as changing penalties in the last paragraph of
a section.

If TEX could be used as a library, what would
its API look like? The pdfscript approach is a
possibility. First, it is enough. Second, optimizations
are possible. Commands could be converted to tokens
directly, without serializing first to a string and then
parsing this string in TEX. Similar, text content
could immediately become TEX characters, without
first escaping and then unescaping.

For me, the most important part, however, is
how pdfscript affects the non-TEX world. In the
final version of the “Essential N TEX” example, we saw
that sections, paragraphs, inline markup and other
document elements are represented as objects with
properties and methods. This approach fits perfectly
with modern programming practice, and therefore I
hope that pdfscript will become a viable alternative
to XSL-FO and other PDF creation tools. And when
one uses pdfscript, one is actually using TEX.

The next step of the work is to move from the
prototype to a first production version. In particular,
I plan to make a PHP version of pdfscript, develop
a few PHP stylesheets (document templates) and
collect users’ feedback to decide on the priorities of
further development.

References

[1] Jonathan Fine. TEX forever! In EuroTpX 2005
(Pont-a-Mousson) Proceedings, pages 140-149,
2006. http://tug.org/TUGboat/Articles/
tb27-0/fine.pdf.

[2] Alex Papadimoulis. The Daily WTF: Curious
Perversions in Information Technology.
http://thedailywtf.com/.

[3] Oleg Parashchenko. API to generate TEX files,
search for related work. comp.text.tex, http:
//groups.google.com/group/comp.text.tex/
browse_thread/thread/ba29ef069a47f00a/.

[4] Oleg Parashchenko. TEXML: Resurrecting
TEX in the XML world. TUGboat, 28(1):5-10,
March 2007. http://tug.org/TUGboat/28-1/
tb88parashchenko.pdf.

[5] Jon Warbrick. Essential IXTEX. http:
//mirror.ctan.org/info/latex-essential/.

¢ Oleg Parashchenko
bitplant.de GmbH
Fabrikstr. 15
89520 Heidenheim, Germany
olpa (at) uucode dot com
http://uucode. com/

TUGboat, Volume 31 (2010), No. 3

illumino: An XML document production
system with a TEX core

Matteo Centonza and Vito Piserchia

Abstract

XML is the state of the art in publishing technology.
Publishers, through the “one source, multiple out-
put” paradigm, are able to publish the same content
to multiple media without much effort. In this pa-
per we’ll investigate current scenarios for publishers
adopting a BWTEX workflow and introduce illumino,
our fulltext XML production system built around

TEX.
1 Introduction

XML publishing in scholarly publications is nothing
new. Publishers, through content/format separation,
can leverage the many benefits of XML:

e Publish the same content to multiple media

Store production data in a neutral format, the
“lingua franca” of Internet applications

Use XML as a neutral format for long-term
archival of content

e Disseminate content through syndication

e Have content ready for data harvesting/mining
(discussed in sect. 4.3)

With the term “XML publishing”, we are re-
ferring to procedures and methods generating final
output media from XML sources. XML sources are
authored to produce final output, ready to be pub-
lished. On the other hand, XML publishing is a
complex task since content should be structured to
be valid XML, i.e.:

e Encoded with correct metadata granularity
e Follow an XML grammar

XML publishing tools are often complex content man-
agement systems (CMS). Users need to perform
content authoring according to tool specifications.
Import tools may be provided, but imported content
needs to be reviewed. This is a time-consuming task.

Publishers interested in XML publishing and
adopting a IXTEX based workflow, are either sup-
posed to develop complex in-house solutions or out-
source most of the publishing chain. There are many
outsource facilities more or less ready to do the job
but the price to pay is losing control of the work.

In this paper we’d like to present illumino, our
fulltext XML production system that is trying to
change this scenario. We’ll present the ideas be-
hind this technology, system capabilities and discuss
future development.

213

1.1 illumino

illumino is a fulltext XML production system, built
around (I#)TEX, which integrates international stan-
dards such as:

e DocBook 5.0
e MathML 2.0
e SVG Tiny 1.2
e Unicode 5.0

illumino converts IMTEX sources to its internal
XML format (DocBook) and the publishing chain,
starts from XML sources.

The process is similar to the one described in
the seminal article by E. Gurari and S. Rahtz [3]
but uses different XML technologies. For a graphical
representation of the full process, please see figure 1.

illumino is a multiplatform application built
around TEX (TEX Live and the embedded TEX4ht),
XSLT 2.0, Java, git (as SCM) and once configured,
has native support for publisher IATEX classes and
generates publishers’ native production files as out-
put. It is able to run unmodified in the old BTEX
workflow.

illumino aims to integrate as smoothly as possi-
ble with any ITEX workflow, minimizing production
changes to obtain fulltext XML publishing.

To achieve this goal, i1lumino performs auto-
matic metadata enrichment through heuristic meth-
ods to match content granularity needed by a given
XML grammar. In order to guarantee content safety
while heuristically enriching unstructured informa-
tion, i1lumino has been designed to produce output
that perfectly matches that of the KTEX production
source file the system is processing: we test for equal
checksums of source and production output (cur-
rently PostScript output) to ensure this. When this
perfect match (“equivalence”) applies we are sure
that the system has not introduced any modification
to document content, so there’s no need to review
the article content.

illumino has embedded content checking (via
SHA checksums) and the user is warned when the
system outcome is not the perfect equivalence; in
those cases, illumino is able to visually highlight
differences found, so that visual validation can take
place.

illumino is an incremental (& la Apache ant),
client /server application and is able to run through
the network with speed similar to that of a conven-
tional WTEX workflow. By integrating SCM technolo-
gies, illumino can be used concurrently in a safe
way. The complete list of features is given on the
main illumino web page.

illumino: An XML document production system with a TEX core

214

TUGDboat, Volume 31 (2010), No. 3

metatype server

internet

<IDOCTYPE htal PUBLE
<Htal>

903 12-22->

customer equipment

<ol version="1.8" |
<article xulns=http:

conformance="latex"
condition="epj"
renap="svjour
class="journalarticle">

<info
<title>irbs</title>

outwn||i

</info>

— XML |

=

Figure 1: The illumino architecture

2 illumino architecture

Figure 1 shows current illumino client/server in-
teraction. i1lumino uses standard components and
implements standard and open protocols.

illumino has its foundations on just two main
components: TEX Live and Java.

From a technical point of view, illumino is
based on Apache ant and is implemented as several
custom ant tasks, through our illuminant library
(antlib). By using ant, illumino is an incremental
(through dependencies and timestamps calculations)
and multithreaded application (Java).

The system is completely standalone' and ant,
used also to build the whole stack, is able to update
and rebuild all upstream dependencies.

What follows is a description of high-level pro-
cesses of which illumino is made.

1 With the exception of the Apache Tomcat servlet con-
tainer (used to implement the caching XSLT engine) and git
SCM program.

Matteo Centonza and Vito Piserchia

2.1 fit4ht

This part of illumino, as its name may suggest, is
responsible for making the initial ITEX source file
“fit” to be run under TEX4ht. This workflow seg-
ment parses IWTEX document and by using heuristic
algorithms performs:

e Automatic document cleanup (e.g. standardize
misused TEX primitives and sloppy constructs

to ITEX)

e Enrich document metadata structure (split and
tag content according to information patterns)

e Make some constructs ready to be correctly in-
terpreted by TEX4ht

From a low-level point of view, fit4ht is imple-
mented as an ant filterreader.

2.2 TgX4ht

TEX4ht is the heart of i1lumino and is the compo-
nent taking care of KTEX to XML transformations.

TUGboat, Volume 31 (2010), No. 3

We'll not delve into TEX4ht internals since this
is out of scope for this article. For a more in-depth
explanation of how TEX4ht works, the reader may
refer to [2, 1].

TEX4ht’s most notable difference with other sim-
ilar technologies is the use of the real thing, the TEX
parser, when converting a TEX file to another format.

For simplicity, we’ll condense the TEX4ht work-
flow to three main steps:

1. Seed configurable (at the control sequence level)
hooks in DVI output

2. Harvest the seeded hooks to generate a given
markup representation

3. Post-process the outcome to undergo validation

We have heavily customized TEX4ht? mainly to:

e Implement a native backend for DocBook 5.0
output.

e Add support in the TEX4ht core for editorial
fine tuning control sequences (e.g. supporting
all tuning toks, vertical, horizontal, and math
spaces, ...) as XML processing instructions.

e Enrich control sequence mapping in order to go
from BTEX—XML and back without degrada-
tion in information quality.

By pre-processing input files and slightly mod-
ifying some TEX4ht internals, we have made the
ITEX—XML conversion a completely automated pro-
cess.

We have developed custom “(I&)TEX4ht com-
pile” ant tasks to have automated compilation of
sources. Compile reruns are handled automatically
(e.g. TEX4ht, for complex tables have to run several
times, and I¥TEX needs to be rerun when labels are
modified).

Through TEX4ht’s power and flexibility we’ve
been able to have fine-grained content resolution and
exactly remap a KTEX file into its corresponding
DocBook 5.0 counterpart, producing the same out-
put (we call it “equivalence” and their outputs have
identical checksums).

illumino testcases are made of “equivalences”
with research papers in physics from different schol-
arly publications. This approximately 400 pages and
30 articles test suite is i1lumino’s internal certifi-
cation system and is used to avoid regressions and
to spot inconsistencies in the whole illumino ap-
plication stack (including upstream dependencies).
For every build, i11lumino must pass these test cases
that are constantly updated as soon as we implement
new features or fix bugs.

At present, illumino has been tested on ap-
proximately 4k pages of content from hard sciences.

2 Thanks to the invaluable help of Eitan Gurari.

215

2.3 XML transformation phase

illumino uses XSLT to transform the raw XML doc-
ument generated by the previous phase (TEX4ht).

In more detail, i1lumino’s XML transformation
phase is currently using XSLT 2.0 and takes advan-
tages of its features, e.g. by using xsl:function,
xsl:character-map, regular expressions and pat-
tern matching features extensively.

The XSLT 2.0 phase must be seen as a multi-
stage stack of stylesheets, where every filter accom-
plishes a different task.

XSLT stylesheets are organized in two main sets:

e xtpipes, an XSLT pre-phase, which takes care
of space rearrangement and element positioning,
and produces an enriched and valid DocBook
document;

e Metatype DocBook XSLT, transforming the re-
sulting DocBook document to all supported for-
mats (including BTEX with publisher’s class).

2.3.1
In this stage, the filter performs:

xtpipes stylesheets

e Space rearrangements
e Element reordering and structure enrichment
e Validation fixes

Space rearrangements are strictly related to the
design decision of aiming for full equivalence with
source output. TEX and XML spaces obey com-
pletely different sets of rules in determining the out-
put. In BTEX spaces can appear almost anywhere in
the source document but may be relevant to output
in only some cases; conversely, an XML grammar
strictly controls the allowed spaces in the document
tree.

In order to achieve “equivalence” between source
and production output, we have handled all corner
situations in which the meaning of spaces from ETEX
and XML differ.

Regarding element reordering and enriching, we
have to face the different nature of semi-structured
and structured data. For example, in BTEX docu-
ments, many commands can change the properties
of the entire group or environment when specified
inside that group. Almost all the alignment com-
mands have this behaviour (e.g. \centering inside
a floating environment). On the other hand, on the
XML side we have to specify this behaviour with
the tag that represents the ITEX environment, with
permitted attributes, if any (i.e. align="center"
inside the CALS table element).

Keeping in mind that seeding of TEX4ht hooks
is sequential and happens when TEX sees the com-
mands, we have two possibilities:

illumino: An XML document production system with a TEX core

216

e using elements and attributes suggested by the
XML schema, when meaningful and close to
KTEX counterparts (e.g. alignment in table en-
vironments)

e using a powerful transclusion and linking tech-
nique

xtpipes stylesheets follows the first approach
where possible and in the remaining cases reverts to
using a built-in x1link/xpointer processor, imple-
mented with XSLT function extensions.

For example, the xpointer scheme can be used
to link other elements in the document and the
xinclude syntax can be used to transclude from
other documents.

We have been able, with our XSLT 2.0 xpointer
implementation, to point to any other element in the
document and e.g. change attribute values. In short,
we have XSLT transformations driven by the XML
content, so in the final analysis governed by TEX4ht.

When the latter method is not applicable, we
resort to bare XML processing instructions to render
the construct.

Validation techniques are discussed in sect. 4.1.

2.3.2 metatype DocBook stylesheets

This phase produces the supported output formats,
starting from valid DocBook 5.0 sources. Leverag-
ing XML’s strengths, we can generate several output
documents (e.g. simple text, HTML, BTEX or doc-
uments in other XML markup languages) from the
same XML source.

2.4 DocBook version 5

DocBook, developed by the OASIS consortium, is a
semantic markup language for technical documenta-
tion. As a semantic language, DocBook is focused
on content and meaning (DocBook has not been
designed to visually format content).

DocBook offers several advantages over compet-
ing markup languages:

e Long history and schema stability

e Wide adoption and great availability of tools
that support authoring of DocBook documents

e Capacity to generate output files in a wide vari-
ety of formats (HTML, XSL-FO and KTEX for
later conversion into PDF or other document
markup languages), lately epub

e Semantic similarities with BTEX commands

e Modular structure including widely adopted
XML grammars (e.g. MathML and SVG)

For a more in-depth explanation of DocBook
concepts, the reader may refer to [5].

Matteo Centonza and Vito Piserchia

TUGDboat, Volume 31 (2010), No. 3

2.5 illumino-remote

illumino is a client/server application built upon
open protocols. illumino leverages SCM technolo-
gies, and the backend system exposes git (http:
//git-scm.com/) interfaces.

illumino-remote, the system client, interacts
with the remote illumino server through the git
protocol.

Whenever the git daemon receives new change-
sets (deltas) for a given article from a client, a new
local (server) workflow run will be launched on the
updated sources and results (e.g. XML, PDF deltas)
will be sent back to the client.

Normally git roundtrips are very fast® in com-
parison to other SCM technologies and we are able,
in combination with ant behind the scenes, to have
illumino processing time be on the same order as a
BTEX workflow run.

illumino-remote is a Java application with
JMS message passing between client and server. We
are waiting for the pure Java git (jgit) implemen-
tation to mature, in order to have a pure Java client.

illumino-remote can control all remote back-
end behaviour such as:

e Repository operations (add, delete article re-
sources)

Enable/disable output formats

Choose the PDF output engine (pdfTEX, Adobe
Distiller, ghostscript)

4

Show output differences

e Enforce output equivalence®

e Choose a secondary XML output format

3 Usage caveats

illumino has been designed to integrate as smoothly
as possible into any existing KTEX workflow.

XML publishing, starting from unmodified TEX
production sources, while a cost-effective way for
publisher to enable a full text XML workflow, is also
a complex software task. Aspects of this complexity
are:

e Automatic enrichment of semi-structured con-
tent to a more structured form

e Proper separation of content from presentational
elements.

What follows is a list of production caveats.

3 Deltas (differences) for storing changesets and fast merg-
ing/indexing algorithms let git compete with some native
filesystem operations.

4 Visual differences are presented when the transformation
does not end with output equivalence.

5 i1lumino will fail the transformation if the result is not
equivalence.

TUGboat, Volume 31 (2010), No. 3

3.1 Automated content tagging

Often KTEX sources are not sufficiently structured
to permit a 1:1 mapping with the majority of XML
schemata. To be able to fill all the data structures
provided by an XML schema, we have to properly
resolve pieces of information adhering to specific
patterns. These patterns are able to take care of
most of the production scenarios we have seen during
the heavy test phase our product has undergone.

Out of the box, illumino is able to resolve
correctly and to split various sparse information that
in other semi-automatic systems users tag manually.

This process is by no means perfect since it
is completely heuristic. In some corner cases, this
approach may not be completely satisfactory and
manual tagging is needed. If a new content pattern
is found or highlighted, it will be added to existing
filters.

In other cases, heuristic treatment is simply in-
effective (such as affiliation splitting) and users must
manually tag content to get the needed granularity
(e.g. split into organization name, division, etc.).

Our long-term aim is to integrate i1lumino with
the UIMA framework and leverage Bayesian annota-
tors to automatically split what currently is done
manually (see sect. 4.2).

3.2 Content/presentation separation

IXTEX has a plethora of commands, environments
and class infrastructures which allow for a very high
fraction of content separated from presentation.

Authors strictly adhering to IMTEX and class
instructions will provide a very good source base to
transform to XML. Unfortunately this is not always
true, and non-standard environments, low level TEX
code instead of standard IXTEX, TEX font primitives,
etc., are easily found.

We have done our best to automatically trans-
form non-standard code to a more conformant form,
preserving its original meaning. This again will prob-
ably not cover all possible cases. In a few cases, users
should manually convert the non-standard code.

3.3 XML validation

A document, to be valid according to an XML gram-
mar, should be checked not only at the structural
level but also at the element content level (i.e. not
only how elements nest but also what elements con-
tain).

This streamlines further processing to other for-
mats and e.g. long term archiving of content (one of
the most interesting parts of an XML workflow).

This (not surprisingly) comes at a cost: content
sometimes should be rearranged in order to adhere to

217

a given XML schema. The upside is that document
overall quality will be increased.

In most situations, TEX4ht is able to produce
valid XML documents, but some problematic cases
exist. In our experiments, we have found at least
two classes of problems in which validation should
be refined at a later XML post-processing stage.

As already mentioned, this is due to the strict
rules imposed on an XML document when compared
with the weak structure imposed by the BTEX gram-
mar: KTEX to XML transformation can produce
XML chunks that do not fit in the XML structure
(e.g. elements outside allowed parent).

We have solved these validation problems by
using XSL context-aware xpath expressions, rear-
ranging the offending chunk and folding it with the
most appropriate parent element, whenever the XML
schema allows this. With this approach we are able
to solve most validation problems. In some remaining
cases, users must resort to recoding IXTEX sources to
solve validation problems; a high fraction of problems
come from offending XML chunks generated from a
sloppy or invalid use of KTEX constructs.

4 “What the future brings”. ..
4.1 XML validation

Currently we validate XML documents through the
Namespace-based Validation Dispatching Language
(NVDL).

NVDL is able to route content coming from a
given namespace in order to be validated by the
correct namespace grammar. In this way, we are able
(by using DocBook) to intermix content validated
through DTD, RelaxNG, and XML Schema.

oNVDL, an open-source NVDL implementation
based on Jing, is our choice.

In the future, we want to explore the opportunity
to take advantages of other XML validation languages.
In particular our attention and future efforts are
focused on the Schematron validation language. By
using Schematron rules we will be able to deal more
easily with current validation constraints.

4.2 Improving unstructured content
parsing through the UIMA framework

In section 2.1 we introduced fit4ht filters taking care
of document metadata structure enrichment, infor-
mation tagging and code cleanup.

fitdht is a set of specialized modules taking care
of enriching information structure by adding context
metadata. The nature of fit4ht modules is heuris-
tic: whenever document excerpts adhere to a given
pattern, information can be split (safely, since “equiv-
alence” or visual validation comes to help).

illumino: An XML document production system with a TEX core

218

Since one of illumino’s tasks is to treat un-
structured/partially structured information to con-
vert into a more structured form, in the long term
we’ll port fitdht modules to Apache UIMA (http:
//uima.apache.org/).

Unstructured Information Management appli-
cations are software systems that analyze large vol-
umes of unstructured information in order to discover
knowledge relevant to an end user. An example
UIM application might ingest plain text and identify
entities, such as persons, places, organizations; or
relations, such as works-for or located-at.

The UIMA frameworks support configuring and
running pipelines of Annotator components. These
components do the actual work of analyzing the un-
structured information. Users can write their own
annotators, or configure and use pre-existing anno-
tators. Some annotators are available as part of
the UIMA project; others are contained in various
repositories on the Internet.

By integrating illumino with the framework
we will be able to leverage the software ecosystem
built around UIMA and e.g. split information based
on Bayesian inference or address other editorial tasks
such as normalization of inflected forms.

4.3 Knowledge mining

Another interesting field for which scientific XML
content is particularly suited is knowledge mining.

Several advances in computer science have been
brought together under the rubric of “data mining’
[4]. Techniques range from simple pattern searching
to advanced data visualisation and neural networks.
Since our aim is to extract comprehensible and com-
municable scientific knowledge, our approach should
be characterised as “knowledge mining”.

Our idea is to create a network of links between
research articles from various fields of science and ac-
celerate research, scientific discovery and innovation.

The key point is that scientific papers, especially
from the hard sciences, encode most of their content
using mathematical expressions. Every mathemati-
cal expression has a unique meaning.

By indexing all occurrences of mathematical
expressions present in research papers, it would be
possible to build a network of links between research
articles. Analyzing links between different fields of

i

Matteo Centonza and Vito Piserchia

TUGDboat, Volume 31 (2010), No. 3

knowledge would make it possible to deduce symme-
tries, patterns, and even similarities that could be
used as research targets.

4.4 illumino GUI

We plan to develop a graphical interface in order to
have a smooth interaction with the system. This
graphical interface should integrate a KTEX editor
and will handle remote interaction with the system.

In our plans, this will be done by developing
an Eclipse plugin, in order to leverage the Eclipse
ecosystem to have advanced functionalities such as:

e Real-time shared editing
e Context sensitive editing
e Seamless remote interaction

e Versioning and change management (& la git).

References

[1] G. Cevolani. Introduzione a TEX4ht,
Proceedings of the 2004 Italian GulT meeting
(in Ttalian). http://www.guit.sssup.it/
guitmeeting/2005/articoli/cevolani.pdf

[2] M. Goossens and S. Rahtz with E. Gurari,
R. Moore, and R. Sutor. The BTEX Web
Companion, Addison-Wesley, 1999.

[3] E. Gurari and S. Rahtz. “From KTEX
to MathML and back with TEX4ht and
PassiveTEX”. http://www.cse.ohio-state.
edu/~gurari/docs/mml1-00/mm1-00.html

[4] P. Langley and H.A. Simon. Applications
of machine learning and rule induction.
Communications of the Association for
Computing Machinery, 38(11), 54-64, 1995.
[5] N. Walsh. DocBook: The Definitive Guide,
O’Reilly & Associates. http://www.docbook.
org/tdg/

¢ Matteo Centonza
metatype, Via Santacroce 13/5,
1-40122 Bologna, Italy
matteo (at) metatype.it

¢ Vito Piserchia
metatype, Via Santacroce 13/5,
1-40122 Bologna, Italy
vito (at) metatype.it

TUGboat, Volume 31 (2010), No. 3

Managing printed and online versions of
large educational documents

Jean-Michel Hufflen

Abstract

We have developed a I¥TEX 2¢ package, pfa-macros,
usable for both presentational education, concerning
‘classical’ students, and distance education, where
most of a curriculum is performed by means of online
documents. First, we explain why requirements for
educational documents are not the same for these
two ways of teaching. Then we show why our pack-
age allows us to manage two versions — printed and
online — of the same textbook.

Keywords Presentational education, distance
education, course text, online course, case study,
IWTEX, PDF, pdfWTEX, pfa-macros package.

1 Introduction

The Internet has revived correspondence education:
now many network tools are widely used within this
field: electronic mail, mailing lists, forums, online
documents available via the Web, etc. The term ‘cor-
respondence education’ seems to be quite old, since
it appears to be related to ‘classical’ letters sent and
delivered by post, so nowadays the term ‘distance
education’ is preferred. As result of greater and
greater interest in distance education, most universi-
ties in the world have increased such offerings. An
example of a French academic institution delivering
distance education is the CTU,! part of the Univer-
sity of Franche-Comté, located at Besancon. The
CTU allows students to get all the units required
for a master in Computer Science. Of course, the
University of Franche-Comté still provides curric-
ula in presentational education — for students who
physically attend ‘classical’ lectures, exercises and
lab classes — which remains the ‘traditional’ way of
teaching. Obviously some teaching units are common
to the two curricula of presentational and distance
education.

In this article, we show how some new IXTEX
commands allow us to manage the different parts of
a single document’s body, for presentational students
as well as distance ones. In fact, these parts have
been initially written as chapters and appendices of
a textbook for presentational students. Later, they
have been reused and maintained as we explain in
Section 2. Then Section 3 goes thoroughly into re-
quirements about educational documents and shows
that requirements for textbooks for presentational

1 Centre de Télé-enseignement Universitaire, that is, Uni-
versity Centre for Teleteaching.

219

students and online documents for distance students
are not the same. Our commands have been grouped
into a package pfa-macros:? Section 4 describes the
broad outlines of it. Finally, Section 5 discusses some
alternative solutions.

A report about this work has already been pub-
lished as [7], but within a general conference about
computer-aided education, so there we reduced tech-
nical details about IATEX’s features as far as possible.
The present article gives a bit more detailed de-
scription of our package’s functionalities.® However,
reading it only requires knowledge of ITEX as an
end user.

2 History

One of the teaching units we are in charge of is
devoted to functional programming.* In fact, it is
entitled Advanced Functional Programming, PFA for
short,® since it is attended by graduate students —
4th-year university degree in computer science — that
is, students who already have experience in program-
ming. The ‘philosophy’ and contents of this unit
are described in [6]. Let us just recall briefly that
students actually practise only one programming
language within this unit — Scheme [20] —but alter-
native implementations of functional programming
concepts are exemplified using other programming
languages, such as Common Lisp® [21], Standard
ML7 [16], CAML® [12], and Haskell® [17]. Other com-
parisons with modern object-oriented languages such
as Java [9], C++ [22], and C+# [13] are also given.
In addition, we show in [6] that some examples are
demonstrated using TEX’s language. As a conse-
quence, a textbook based on what is taught within
this unit should include many excerpts of programs
using various languages. Setting up this teaching unit
PFA began in spring 1997 and the first version of
our printed document [4] came out in August 1997,
with a pre-version of a short additional document [5]
devoted to an introduction to the A-calculus [1], the
common root of functional programming languages.

2 Available online: http://lifc.univ-fcomte.fr/home/
~jmhufflen/latex-etc/pfa-macros.sty.

3 An extended version [8], more technical, is given in
the proceedings of the 2010 conference of the GJIT (Gruppo
Utilizzatori Italiani di TEX), the Italian-speaking users group.

4 Punctional programming emphasises application of func-
tions, whereas imperative programming — the paradigm im-
plemented within more ‘traditional’ languages such as Pascal
[25] or C [11] —emphasises changes in state.

5 Programmation Fonctionnelle Avancée, in French. Our
package’s name — pfa-macros — originates from this acronym.

6 ‘Lisp’ stands for LISt Processor.

7 ‘ML’ stands for MetaLanguage.

8 Categorical Abstract Machine Language.

9 Named after Haskell Brooks Curry (1900-1982).

Managing printed and online versions of large educational documents

220

When the master’s for distance students was
launched, for the academic year 2004—2005, its cur-
riculum obviously resembled the master’s in presen-
tational education. But a unit common to these two
curricula was not necessarily handled by the same
teacher. Concerning us, we have been in charge of
the PFA unit within both presentational and dis-
tance education, but this arrangement does not hold
true for all the units. So we were interested in a
method that would allow us to derive the two ver-
sions— printed and online — from the same source
files. Such a modus operandi would ease the mainte-
nance of our documents. For example, some slight
mistakes should be fixed once, and we wished to add
more examples. More ambitiously, the version of
standard Scheme changed, from [2] to [10], so we
ought to adapt some existing texts and examples.'©

3 Different requirements

The document [4] consists of six chapters. Each chap-
ter includes exercises, given with model solutions.
These chapters are followed by several appendices —
making precise some extra information or devoted
to lab class exercises done by students—and a rich
‘Bibliography’ section. The whole document is ap-
proximately 400 pages long. It can be viewed as
a textbook, even if its dissemination is limited to
this unit’s students. The students are progressively
given the successive parts of this document, but it
is organised as a whole, with precise architecture:
cross-references are widely used throughout it. Of
course, it contains not only text—in the sense of
successive paragraphs —but also many examples of
programs and some mathematical formulas, even if
it is not really a textbook in mathematics.

3.1 Requirements about typography

When the first teaching units were launched in dis-
tance education, teachers were obviously asked to
install online documents on the Web. Some teachers
wrote documents using HTML.!! However, such a
choice seemed to us unsuitable for scientific docu-
ments: the look of resulting Web pages depends on
the browser used; in addition, formatting mathemat-
ical formulas and program fragments often results in
poor-quality output. We could have used some con-
verters from MTEX source texts to HTML pages,'?
which may use images to insert fragments whose
conversion to HTML is difficult, e.g., mathematical
formulas. However, even if these converters allow the

10 Later, in 2007, another change occurs, from [10] to [19)].

1 HyperText Markup Language. A good introduction to
it is [15].

12 Some are described in [3, Ch. 3-4].

Jean-Michel Hufflen

TUGboat, Volume 31 (2010), No. 3

output’s quality to be improved, in comparison with
direct writing in HTML, authors have to adapt source
texts in order for the conversion to work properly.
In other words, it may be difficult to do such a task
for a large document already written and formatted.

Concerning the insertion of program fragments,
let us recall that this point was essential, especially
about the fragments given in languages other than
Scheme. We could perform some demonstrations
during the lab classes of presentational students, so
they could observe these other programs’ behaviour.
The same modus operandi was impossible for dis-
tant students, and it was difficult to ask them to
install many compilers or interpreters. So the solu-
tion was to ask them for exercises only in Scheme —
as done for presentational students —but the exam-
ples given throughout our text must be explicit, in
order for these students to understand without run-
ning them. In addition, we paid much attention to
the indentation of these programs and inserted some
comments throughout them using special effects —
e.g., slanted fonts —so they do not use verbatim-like
environments, but are built by means of tabbing
environments.

From our point of view, only PDF!? [3, Ch. 2]
offers some sufficient warranty about the quality of
texts displayed on the Web. This point is also re-
lated to communication: when a teacher writes some
formulas onto a blackboard, students see the result
exactly as the teacher formats it. The same warranty
is given by PDF files, not by HTML pages. So we
decided to systematically use PDF files, generated
by the pdfIATEX program [3, § 2.4]. In addition,
if the hyperref package [3, § 2.3| is used, PDF files
produced by pdfIATEX can support hyperlinks, as in
HTML. Let us now come to the organisational differ-
ences between texts for presentational and distance
students.

3.2 Presentational vs. distance education

Of course, distance students could not be given a
single document as a huge PDF file. It is preferable
for distance students to get separate medium-sized
files, according to the steps of their planning. Be-
sides, let us not forget that these files are downloaded:
students cannot be asked to download a huge file
again if only some typing mistakes have just been
fixed. Splitting this big document into separate files
induces a precise organisation of cross-reference links
throughout the original version. Information redun-
dancy should be avoided, so all the parts should point
to the same ‘Bibliography’ section, as a separate file.

13 Portable Document Format.

TUGboat, Volume 31 (2010), No. 3

Model solutions can be given after each exercise
for presentational students, especially if this exercise
has already been proposed in class. That cannot
be the same for a document devoted to distance
education: model solutions should be grouped at the
end of each chapter, or provided in separate files.

4 The pfa-macros package

Let us assume that the chapters, sections, etc. of
the two versions— printed and online — are num-
bered identically. Besides, ITEX allows each chap-
ter of a document to be associated with its own
auxiliary (.aux) file, containing information solving
cross-references. So we can compile a chapter for the
online version by using the auxiliary files of the docu-
ment’s other chapters of the 'presentational’ version.
A cross-reference written by KXTEX’s \ref command
is implemented in pdfIATEX as an internal hyperlink,
which is fine for cross-references within the same
chapter. For external references, we define a new
command:

\pfaexternalref [chapter-file]{labely}

If the big document for presentational education is
generated, this works like \ref{labelp}. If the chap-
ter is generated as part of the online text, a link to
the file chapter-file.pdf is put. In both cases, the
same text is displayed or enlighted by a hyperlink. If
the complete version has already been put on the site,
it can be searched. Otherwise, it is a kind of stub
whose contents reads ‘This chapter will be put later’
and when the complete version is put, the hyperlink
will remain the same.'* We use similar technique for
cross-references to footnotes belonging to another
chapter (commands \pfacite, \pfaexternalref,
\pfaexternalfootnotref, etc.).

5 Other methods

There exists some work allowing a IXTEX document
to refer to a label belonging to an external document.
A first example is given by some commands of the
html package [3, § 3.5.3], unsuitable for us, since
this package is only interesting if you want to derive
HTML pages. A second implementation of external
references using hyperlinks is given by the xr-hyper
package [14, § 2.4.6]. Nevertheless, this package has
two drawbacks for us. First, it does not deal with
bibliographical citations (\cite commands). Second,
it cannot refer to an external label that will be defined

14 Of course, when we started this task, such a choice led
us to look for all the occurrences of the \ref command and
change some into \pfaexternalref ones. In practice, that
was not difficult, because a good technique is to prefix labels’
name by an identifier for the corresponding chapter. So the
file name to be put was not difficult to supply.

221

later. To explain that, let us consider that the first
chapter refers to a section of the second chapter. As
long as the second chapter is replaced by a stub, the
hyperlink will fail; it will work only as soon as this
chapter’s complete text is made public.'® Within our
system, the hyperlink always points to the second
chapter’s PDF file, a stub or the complete text.'®

If we had started from scratch, that is, if both
the presentational and distance unit were launched
at the same time, an interesting method could have
been to specify our input files using XML,'" and
XSLT!® [24] could have been used to derive texts for
ITEX, or in XSL-FO? [23]

6 Conclusion

A first sketch of the present article was initially de-
signed for the EuroTEX 2010 conference. The Web
page announcing this event mentioned that KTEX
is still widely used, but ‘the landscape is changing’,
and other word processors continue to emerge.

From our point of view, the present work shows
that ITEX is still unrivalled to ‘intelligently’ process
texts for several purposes. As mentioned above, the
first version of our course text came out in 1997.
Then it has evolved deeply — chapters and appen-
dices have been wholly revised — and continuously,
since we have applied some changes each year. We
did it successfully —in particular when we had to be
conformant with new revisions of standard Scheme —
so we can think that our system is reliable.

7 Acknowledgements

I am grateful to the distance education students who
addressed me very constructive criticisms; year after
year, they indirectly helped me improve my tools.
Thanks to Karl Berry and Barbara Beeton, who
kindly proofread this article.

o Jean-Michel Hufflen
LIFC (EA CNRS 6942)
University of Franche-Comté
16, route de Gray
25030 Besangon Cedex
France
jmhufflen (at) lifc dot univ-fcomte dot fr
http://lifc.univ-fcomte.fr/home/”~ jmhufflen

15 From a pedagogical point of view, such a forward ref-
erence is often viewed as bad. But it can occur within a
footnote, or a fragment that can be skipped at first reading.

16 That could be improved in a future version: if the ex-
ternal label exists, the hyperlink directly points to the corre-
sponding resource, if not, it points to a stub.

17 eXtensible Markup Language. [18] is a good introduc-
tion to this meta-language.

18 eXtensible Stylesheet Language Transformations.

19 eXtensible Stylesheet Language — Formatting Objects.

Managing printed and online versions of large educational documents

222

References

[1] Alonzo CuuRcH: The Calculi of Lambda-Conversion.

2]

3l

(4]

(5]

(6]

(7]

18]

(9]

[10]

[11]

[12]

Princeton University Press. 1941.

William D. CLINGER and Jonathan A. REEs,
with Harold ABELSON, Norman I. ADAMS 1V,
David H. BARTLEY, Gary BROOKS, R. Kent
DvBviag, Daniel P. FRIEDMAN, Robert HALSTEAD,
Chris HansoN, Christopher T. HAYNES,

Eugene Edmund KOHLBECKER, JR., Donald
OXLEY, Kent M. PiTMAN, Guillermo Juan Rozas,
Guy Lewis STEELE, JR., Gerald Jay SUSSMAN
and Mitchell WAND: “Revised Report* on the
Algorithmic Language Scheme”. ACM Lisp
Pointers, Vol. 4, no. 3. July 1991.

Michel GoosseENs and Sebastian RAHTZ,

with Eitan M. GURARI, Ross MOORE and
Robert S. SuTor: The EXTEX Web Companion.
Addison-Wesley Longman, Inc., Reading,
Massachusetts. May 1999.

Jean-Michel HUFFLEN : Programmation
fonctionnelle avancée. Notes de cours et exercices.
Polycopié. Besangon. Juillet 1997.

Jean-Michel HUFFLEN : Introduction au A-calcul
(version révisée et étendue). Polycopié. Besangon.
Février 1998.

Jean-Michel HUFFLEN: “Using TEX’s Language
within a Course about Functional Programming”.
MAPS, Vol. 39, pp. 92-98. In EuroTEX 2009
conference. August 2009.

Jean-Michel HUFFLEN: “Recycling Previous
Documents for Distance Education”. In: Proc.
CSEDU 2010, Vol. 1, pp. 469-472. Valencia, Spain.
April 2010.

Jean-Michel HUFFLEN: “Managing Printed

and On-Line Versions of Large Educational
Documents”. ArsTgXnica. To appear. November
2010.

Java Technology. March 2008. http://java.sun.
com.

Richard KELsEY, William D. CLINGER, and
Jonathan A. REEs, with Harold ABELSON,
Norman I. Apawms 1v, David H. BARTLEY, Gary
Brooks, R. Kent DyBvVIG, Daniel P. FRIEDMAN,
Robert HALSTEAD, Chris HANSON, Christopher T.
HavnEs, Eugene Edmund KOHLBECKER, JR,
Donald OxLEY, Kent M. PITmMAN, Guillermo J.
Rozas, Guy Lewis STEELE, JRr, Gerald Jay
SussmaN and Mitchell WAND: “Revised® Report
on the Algorithmic Language Scheme”. HOSC,
Vol. 11, no. 1, pp. 7-105. August 1998.

Brian W. KERNIGHAN and Dennis M. RITCHIE:
The C Programming Language. 2nd edition.
Prentice Hall. 1988.

Xavier LEROY, Damien DOLIGEZ, Jacques
GARRIGUE, Didier REMY and Jéréme VOUILLON:
The Objective Caml System. Release 3.12
Documentation and User’s Manual. 2010.

Jean-Michel Hufflen

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

TUGboat, Volume 31 (2010), No. 3

http://caml.inria.fr/pub/docs/manual-ocaml/
index.html.

MICROSOFT CORPORATION: Microsoft C#
Specifications. Microsoft Press. 2001.

Frank Mi1TTELBACH and Michel (GOOSSENS,

with Johannes Braams, David CARLISLE,

Chris A. RowLEY, Christine DETIG and Joachim
ScHROD: The IMEX Companion. 2nd edition.
Addison-Wesley Publishing Company, Reading,
Massachusetts. August 2004.

Chuck MusciaNo and Bill KENNEDY: HTML

& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

Lawrence C. PAULSON: ML for the Working
Programmer. 2nd edition. Cambridge University
Press. 1996.

Simon PEYTON JONES, ed.: Haskell 98 Language
and Libraries. The Revised Report. Cambridge
University Press. April 2003.

Erik T. RAY: Learning XML. O’Reilly

& Associates, Inc. January 2001.

Michael SPERBER, William CLINGER, R. Kent
DvyBviGg, Matthew FLATT and Anton VAN
STRAATEN, with Richard KELSEY, Jonathan
REES, Robert Bruce FINDLER and Jacob
MATTHEWS: Revised®°” Report on the
Algorithmic Language Scheme. June 2007.
http://www.rbrs.org.

George SPRINGER and Daniel P. FRIEDMAN:
Scheme and the Art of Programming. The MIT
Press, McGraw-Hill Book Company. 1989.

Guy Lewis STEELE, JR., with Scott E. FAHLMAN,
Richard P. GABRIEL, David A. MooN, Daniel L.
WEINREB, Daniel Gureasko BoBrow, Linda G.
DEMICHIEL, Sonya E. KEENE, Gregor KICZALES,
Crispin PERDUE, Kent M. P1rTmaN, Richard
‘WATERS and Jon L. WHITE: Common Lisp. The
Language. Second Edition. Digital Press, 1990.
http://www.cs.cmu.edu/Groups/AI/html/cltl/
cltl2.html.

Bjarne STROUSTRUP: The Ct+ Programming
Language. 2nd edition. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts. 1991.
W3C: Eztensible Stylesheet Language (XSL).
Version 1.1. W3C Recommendation. Edited

by Anders Berglund. December 2006. http:
//www.w3.org/TR/2006/REC-xs111-20061205/.
W3C: XSL Transformations (XSLT). Version 2.0.
W3C Recommendation. Edited by Michael H.
Kay. January 2007. http://www.w3.org/TR/2007/
WD-xs1t20-20070123.

Niklaus WIRTH: “The Programming Language
Pascal”. Acta Informatica, Vol. 1, no. 1, pp. 35-63.
1971.

TUGboat, Volume 31 (2010), No. 3

Aligning text in diagrams exported by
Mathematica: A question about the
PostScript infrastructure

Michael P. Barnett

Abstract

I produce many KTEX documents that contain dia-
grams exported by Mathematica® graphics. Usually,
these contain text. Often, this is misaligned horizon-
tally. I think that getting correct alignment needs
an understanding of PDF font encoding. This note
describes the problem in hope of getting feedback.

1 Introduction

This note seeks advice from PostScript experts about
certain details of font encoding. I need this infor-
mation to align built-up text expressions that mix
different fonts, in diagrams that are constructed by
Mathematica graphics. I include these diagrams in
IMTEX manuscripts on topics in the natural sciences,
mathematics and the humanities. The text is aligned
by the TMG (text in Mathematica) package that I
wrote. Fig. 1 and nearly 30 similar diagrams are in a
recent paper on nuclear magnetic resonance (NMR)
that I wrote with Istvan Pelczer [1]. The construction

. 180 ° 90°
PCH up o e e n—{ k16D FID
90° 90° \/ \/

'H J’n—ﬁ/z — U2 ——1/)H)— [« 1/3 1)

decouple

Figure 1: An NMR pulse sequence diagram.

of these diagrams prompted the work on TMG. The
package contains an encode function that tries to
position the contents of separate Mathematica Text
commands precisely. This is a standard need when a
set, of related diagrams consists of varied selections of
modules that contain text. The definitive description
of the Text command in The Mathematica Book [2]
states:

“Text[expr, coords, offset] specifies an offset for the
block of text relative to the coordinates given.”

The description goes on to mention sample offsets
that include “{—1,0} left-hand end at {x,y}” and
“{0,—1} centered above {z,y}”. The obvious exten-
sion is that {—1,—1} puts the lower left corner of

* MATHEMATICA is a registered trademark of Wolfram
Research Inc.

223

the text at {x,y}. The description in [2] refers to
the “bounding rectangle that surrounds the text”.
The idea of bounding rectangles that surround
text has been inherent in the use of moveable type for
millennia [3] and, more recently, in phototypesetting
[4]. It is associated with the idea of a baseline, defined
as “the line upon which most letters ‘sit’ and below
which descenders extend” [5]. Fig. 2 shows a sequence
of words and isolated characters in serif, sans-serif
and Greek fonts, that were typeset by elementary
ITEX coding. The rectangles that surround the
characters and the baseline were drawn by \rule
commands. Typesetting software has customarily

NIay El7AEeEH My ElZabeth

Figure 2: Bounding boxes— consistent baselines.

treated the vertical coordinate of a piece of text as
the position of its baseline, since the inception of
the field in the late 1950s [4]. Digital fonts were
developed that treated each character as if it were
contained in a rectangle, that had the point size as
its height, with baselines positioned for consistency
between characters in the same font and in different
fonts. This paralleled the design of metal type slugs.

Fig. 3 shows some bad alignment produced by
Mathematica Text commands. These all contain the
offsets {-1,-1}, and the same y value is used in the
Text and Line commands that produced each row.
Line [{{x1,vy1}, {z2,y2}}] draws a line from (z1,y1)
to (z2,y2).

aad

Henry

Mary Elizabeth

Mary Elizabeth

0123456789

Figure 3: Examples of unexpected misalignment.

{Text[Style["a", FontFamily -> "Times-Roman",
FontSize -> 20], {0,600}, {-1, -1}],
Text [Style["a", FontFamily -> "Courier",
FontSize -> 20], {15, 600}, {-1, -1}1,
Text[Style["a", FontFamily -> "Symbol",
FontSize -> 20], {30, 600}, {-1, -1}1,
Line[{{0, 600}, {80, 600}}],

(=)

Text[Style["H", FontFamily -> "Courier",
FontSize -> 10], {6, 580}, {-1, -1}1,
Text[Style["e", FontFamily -> "Courier",

Aligning text in diagrams exported by Mathematica: A question about the PostScript infrastructure

224

FontSize -> 10], {12, 580}, {-1, -1}1,

Text[Style["y", FontFamily -> "Courier",
FontSize -> 10], {30, 580}, {-1, -1}1,
Line[{{0, 580}, {80, 580}}1,
(x %)
Text [Style["Mary",
FontFamily -> "Times-Roman", FontSize -> 6],
{0, 560}, {-1, -1}1,
Text [Style["Elizabeth",
FontFamily -> "Times-Roman",
FontSize -> 6], {20, 560}, {-1, -1}],
Line[{{0, 560}, {80, 560}}],
(x %)
Text[Style["Mary",
FontFamily -> "Times-Roman",
FontSize -> 121, {0, 540}, {-1, -1},
Text[Style["Elizabeth",
FontFamily -> "Times-Roman",
FontSize -> 12], {30, 540}, {-1, -1}1,
Line[{{0, 540}, {80, 540}}],
(x %)
Text [Style["0", FontFamily -> "Courier",
FontSize -> 6], {0, 520}, {-1, -1}]1,
Text[Style["1", FontFamily -> "Courier",
FontSize -> 6], {6, 520}, {-1, -1}1,

Text [Style["9", FontFamily -> "Courier",
FontSize -> 6], {54, 520}, {-1, -1}],
Line[{{0, 520}, {80, 520}}1};

An earlier version of these commands is shorter
but needs more explanation. There are several rea-
sons for the alignment effects in Fig. 3.

1. In the 1% row, the letter “a” in Times-Roman
and Courier fonts and the a do not line up be-
cause the different fonts are coded with different
baselines in their respective bounding boxes.

2. In the 2" row, the bases of the rectangles that fit
tightly around the individual letters in “Henry’
are aligned. This makes the “y” high relative to
the other letters.

3. In the 3'Y and 4*" rows, the string “Mary” has
consistent baselines. So does “Elizabeth”. But
the “y” in “Mary” pushes the entire string up,
relative to “Elizabeth”.

4. In the 5* row, I think that the digits do not
line up because 0, 3, 5, 6, 8 and 9 were coded
using one set of conventions, and 1, 2, 4 and 7
using a different set.

)

Fig. 4 shows a practical consequence of the align-
ment of personal names. I wrote a Mathematica
script in the 1990s to display genealogies. Fig. 4 is a
minimalistic display of relationships that dominated
British society for half a century. The misalignment

Michael P. Barnett

TUGboat, Volume 31 (2010), No. 3

Henry VII
Arthur Henry VIII others
Mary Elizabeth Edward VI

Figure 4: The simplified Tudor succession.

Nlx 7l =R
]

-

Figure 5: Forced demonstration of bounding box.

would be unacceptable in a scholarly journal that
dealt with the substantive issues that this presents.

Some forms of undesirable alignment become
more pronounced as font size decreases. This may
be related to an apparent drift in the snugness of
the bounding rectangle. Although I have not found
relevant data directly, some simple syntactic errors
make the system display the rectangles that it seems
to use. This is done in the 3" row of Fig. 5 by using
null as the y offset. The system treats it as 0. In
the 15 row, the string “Ay” is set successively in 40,
20, 10 and 5 point Courier type. The y coordinate in
the Text expressions is 550, and a Line expression
draws a line with y = 550 across the page. The serif
of the “y” touches this line in 40 point type, but not
in the smaller sizes. A line drawn with y = 557.6
shows the elevation of the serifs of the “A” relative
to those of the “y” in 40 point type.

In the 2°4 row, the two letters “A” and “y” are
set by separate Text statements, with y = 500. The
serif of the 40 point “y” touches a line with this
coordinate, but the relative elevation of the “A” has
dropped to 6.1 points. As the size decreases, the “y”
continues to move up relative to the “A”.

In the 3' row the rectangles surrounding the “y”
have moved down slightly, with decreasing point size,
relative to the serif. Fig. 6 shows the 5 point example,
magnified 8-fold by the scale parameter in the B TEX

TUGboat, Volume 31 (2010), No. 3

Figure 6: 8-fold magnification of 5 point example.

\includegraphics command. The position of the
horizontal line at y = 450 emphasizes the change.

2 The TMG encode function

I try to achieve the horizontal alignment of a body of
text that is displayed on a single line by putting the
i-th character, denoted here by ¢;, into a separate
expression of the form
Text [Stylelc;,FontFamily->f;, FontSize->s;],
{zo + hi, ¥, {-1,0(fi, si,ci)}]
where i—1 s
1. hz = Z ﬁw(fj,cj),
j=1

2. ¢;, fi; and s; are the i-th character and the font
style and font size in which it is set,

3. w(fi,¢;) is the width of ¢; in 10 point font f;
(giving w("Courier", ¢) the value 6 for the en-
tire character set),

4. o(fi, Si,ci) is the offset that puts the baseline
of the character, in the specified size and style,
onto the line y = gy, that is specified in the
coordinates part of the Text statement,

5. xg is the starting x coordinate of the text.

I developed methods to find widths and offsets by
trial and error. Using these, I found the widths for
the Courier, Times-Roman and Symbol fonts with
ease and accuracy. I found the offsets for the Courier
and Symbol fonts for point sizes 4 to 10, and Times-
Roman for size 12, with considerable difficulty and
tedium and some uncertainty.

I would like advice on finding the offsets
algorithmically from the font tables.

The information may be in the chapter on fonts in
the PostScript Language Reference manual [6]. The
learning curve for this seems non-trivial, and I do
not want to climb it unnecessarily.
The TMG expression
encodeStringl[font, size, z, y, string]

sets string in the specified font face and font size,
starting with the left edge of the bounding box of
the 15¢ character at x, and the baseline at y. In the
more general expression

encodeSequence [itemy, itema, . . .]

225

a a o

Henry
Mary _Elizabeth

Mary Elizabeth

0123456789

Figure 7: Output of encode expressions.

each item is either

1. a character string, e.g. “delay”, that is set in
uniform font and size on a common baseline;

2. a character sequence with no quote marks, e.g.
delay, that the system envelops in quote marks
and treats as just described (this 2°¢ kind of
item actually is restricted to objects that in
Mathematica syntax are symbols);

3. one of the following commands

(a) ps[nl: changes font to size n without al-
tering the baseline,

(b) t£[f1: changes the font to style f,

(¢) t£[f,n]: changes the font to style f and
size n,

(d) subls]: sets the string s in the decoration
size, sunk to subscript level,

(e) suplsl: sets s in decoration size, raised to
superscript level,

(f) subSuplsi,s2]: sets sy and sy as subscript
and superscript, left aligned,

(g) 1SubSuplsi,s2]: sets s; and so as right
aligned subscript and superscript,

(h) tab[z]: changes the x coordinate for the
next displayed object to T,

(i) vtab[gy]l: changes the y coordinate for the
next displayed object to ¥,

(j) hs[nl: increases x by n,

(k) vs[nl: increases y by n.

I hope to extend this set of commands to provide
algorithmic formatting capabilities.

The file alignedByEncode.pdf that produced
Fig. 7 for comparison with Figs. 3 and 4 was written
by the following statement, that contains encode
and encodeString expressions.
export [alignedByEncode =
{AbsoluteThickness[.1],

encode [ps[20], vtab[620], tab[20],
tf["Times-Roman"], "a", tab[40],
tf["Courier"], "a", tabl[60],

t£ ["Symbol"], "a"l,

Line [{{20, 620}, {80, 620}}1,

Aligning text in diagrams exported by Mathematica: A question about the PostScript infrastructure

226

encodeString["Courier", 10, 20, 600,
"Henry"],
Line[{{20, 600}, {50, 600}}],
encodeString["Times-Roman", 6, 20, 580,
"Mary"],
encodeString["Times-Roman", 6, 40, 580,
"Elizabeth"],
Line[{{20, 580}, {70, 580}}],
encodeString["Times-Roman", 12, 20, 560,
"Mary"],
encodeString["Times-Roman", 12, 50, 560,
"Elizabeth"],
Line[{{20, 560}, {100, 560}}],
encode[tf ["Courier"], ps[6], tab[20],
vtab[540], "Oo", "im, "Qm, nw3n owgn_ owgn,
ll6ll, ll7ll, II8II, "9"],
Line [{{20, 540}, {60, 540}}11}]

The file refinedTudors.pdf that produced
Fig. 8 was written by the following statements.

tudorTreeEdges =
{Line [{{200, 600}, {200, 590}}1,
Line[{{135, 590}, {265, 590}}]1,
Line[{{135, 590}, {135, 580}}],
Line[{{200, 590}, {200, 580}}],
Line[{{265, 590}, {265, 580}}]1,
Line[{{200, 570}, {200, 560}}],
Line[{{145, 560}, {255, 560}}],
Line[{{145, 560}, {145, 550}}]1,
Line[{{200, 560}, {200, 550}}],
Line[{{255, 560}, {255, 550}}1}

encodedTudorNames =
{encodeString[

"Courier", 8, 178.4, 605, "Henry VII"],
encodeString[

"Courier", 8, 120.6, 575, "Arthur"],
encodeString[

"Courier", 8, 186.0, 575, "Henry VIII"],
encodeString[

"Courier", 8, 250.6, 575, "others"],
encodeString[

"Courier", 8, 135.4, 545, "Mary"],
encodeString[

"Courier", 8, 178.4, 545, "Elizabeth"],
encodeString[

"Courier", 8, 233.4, 545, "Edward VI"]}

export[refinedTudors =
{tudorTreeEdges, encodedTudorNames}]

The alignment is imperfect but I believe it can
be improved by fine tuning the offsets. I think that
each letter has a range of offsets that are acceptable
in one context, and a different range in another
context, with very narrow overlap. I have been using
just one or two contexts to determine the offsets for
each letter, and picking an offset within the range of
acceptability in a somewhat arbitrary manner.

Michael P. Barnett

TUGhboat, Volume 31 (2010), No. 3

Henry VII
Artkur Henry VIII others
Mary Elizabeth Edward VI

Figure 8: More output of encode expressions.

The present technique supports the alignment
of short expressions with each other, as needed in the
pulse sequence diagram of Fig. 1. That diagram, and
the other diagrams in [1], were produced by ad hoc
coding before I started TMG. Using TMG, I will be
able to extend the options for including explanatory
text in the diagrams, even in its present crude form.
An algorithmic basis for TMG would enable many
other applications of Mathematica graphics in the
kernel mode.

Acknowledgements

I thank Barbara Beeton, Karl Berry and Andrew
Roberts for advice on coding and on sources of in-
formation.

Supplementary material

Accompanying this article on the TUGboat web site is a
collection of additional material:

1. the TMG software described in this note,

2. an account of how to measure widths and offsets,

3. software that I used to explore Mathematica fonts,
with a detailed explanation.

References

[1] M. P. Barnett and I. Pelczer, Pulse sequence edit-
ing by symbolic calculation, J. Magn. Reson. 204
(2010) 189-195.

[2] S. Wolfram, The Mathematica Book, 2nd ed.
Addison-Wesley, New York, 1991, or later edi-
tions.

[3] Movable type. http://en.wikipedia.org/wiki/
Movable_type.

[4] M. P. Barnett, Computer Typesetting, Experi-
ments and Prospects, MIT Press. 1965.

[5] Baseline (typography). http://en.wikipedia.
org/wiki/Baseline_(typography).

[6] PostScript Language Reference, Adobe Systems
Incorporated. http://www.adobe.com/products/
postscript/pdfs/PLRM. pdf.

¢ Michael P. Barnett
Meadow Lakes
Hightstown, NJ 08520, USA
michaelb (at) princeton dot edu
http://www.princeton.edu/ michaelb/nmr/

TUGboat, Volume 31 (2010), No. 3

%@’ The Treasure Chest

This is a list of selected new packages posted to CTAN
(http://ctan.org) from May 2010 through October
2010, with descriptions based on the announcements
and edited for brevity.

Entries are listed alphabetically within CTAN
directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

o Karl Berry
http://tug.org/ctan.html

fonts

adforn in fonts

Ornaments font.
adfsymbols in fonts

Includes arrows and bullets.
autol in fonts

IXTEX support for the Underware Auto 1 fonts.
baskervaldadf in fonts

Font family based on Baskerville.
berenisadf in fonts

Berenis Pro ADF.
cm-unicode in fonts

Computer Modern Unicode.
electrumadf in fonts

Slab serif font family.
gillcm in fonts

Unslanted italic CM fonts following Eric Gill’s ideas.
jamtimes in fonts

Expanded Times Roman fonts with math based on

Belleek.
mdputu in fonts

Unslanted digits in Adobe Utopia italics.
oldstandard in fonts

Unicode font for classical and medieval studies.
poltawski in fonts

Extensive font family; replaces antp.
punknova in fonts

OpenType version of Don Knuth’s Punk font.
romandeadf in fonts

Font family somewhat based on Caslon.
bonita in fonts/softmakerfreefont

IXTEX support files for Softmaker Bonita.

227

*stix in fonts
Unicode mathematics font collection.
tfrupee in fonts
Font with the new rupee symbol.
xits in fonts
STIX with additional OpenType math support.

graphics

bodegraph in graphics/pgf/contrib

Draw Bode, etc., plots with Gnuplot and TikZ.
duotenzor in graphics

Draw circuit and duotensor diagrams via TikZ.
numericplots in graphics

Plot numeric data using PSTricks.
pst-electricfield in graphics/pstricks/contrib

Draw electric field and equipotential lines.
pst-magneticfield in graphics/pstricks/contrib

Draw magnetic field lines of Helmholtz coils.

info

Math-E in info/examples

Examples from Typesetting Mathematics with ETEX.
pstricks_calcnotes in info

Tllustrates using PSTricks for calculus lecture notes.
svg-inkscape in info

Including SVG images in KTEX via Inkscape.
tex-font-errors-cheatsheet in info

Cheat sheet for the most common TEX font errors.

macros/generic
lecturer in macros/generic
Slide support for any format.
*texapi in macros/generic
Writing format-independent packages.
yax in macros/generic
Yet Another Key System.

macros/latex/contrib

acroflex in macros/latex/contrib

Use SWF file to create a graphing screen.
aeb_mlink in macros/latex/contrib

Multi-line link support.
annot_pro in macros/latex/contrib

Text, stamp, and file attachment annotations.
arrayjobx in macros/latex/contrib

Array data structures.

*cals in macros/latex/contrib

Typeset multipage tables with headers, footers, cell

spanning and decorations.
calxxxx-yyyy in macros/latex/contrib

Printing calendars for chosen years and languages.

macros/latex/contrib/calxxxx-yyyy

228

chemfig in macros/latex/contrib
Draw molecules with an easy syntax.

chextras in macros/latex/contrib
Companion package for Swiss typesetting.
chronology in macros/latex/contrib
Horizontal timeline with day granularity.
cntdwn in macros/latex/contrib
Support short and long countdowns, and clocks in
any time zone.

colordoc in macros/latex/contrib
Color braces in doc lists.

cutwin in macros/latex/contrib
Create a “window” in a paragraph.

drawstack in macros/latex/contrib

Draw execution stacks.
drs in macros/latex/contrib

Draw Discourse Representation Structures.
elteikthesis in macros/latex/contrib

Thesis class for ELTE University Informatics.

equell in macros/latex/contrib
Fine exclamation, question, and ellipsis marks.

esk in macros/latex/contrib
Encapsulate Sketch files in ETEX source.

fjodor in macros/latex/contrib
Layout options for small books.

hrefhide in macros/latex/contrib
Display but do not print a hyperlink.
imakeidx in macros/latex/contrib
Produces indices during a typesetting run.

inputtrc in macros/latex/contrib
Tracing which file loads which.

jmlr in macros/latex/contrib
Class for the Journal of Machine Learning Research.

linegoal in macros/latex/contrib
Length remaining on the line.

locality in macros/latex/contrib
Implementation of basic scoping.

logreq in macros/latex/contrib
Log requests to run external files in a machine-
readable format.
marginfix in macros/latex/contrib
Patch marginpar routines to prevent overflowing or
misalignment.
mylatexformat in macros/latex/contrib
Dump a .fmt based on any preamble.
pagesLTS in macros/latex/contrib
Define labels for last pages.
papermas in macros/latex/contrib
Compute mass of printed form of document.
progressbar in macros/latex/contrib
Visualize shares of a total amount as a bar.
realscripts in macros/latex/contrib
Use OpenType features to replace \textsuperscript
and \textsubscript where possible.

macros/latex/contrib/chemfig

TUGhboat, Volume 31 (2010), No. 3

rmannot in macros/latex/contrib
Rich media annotations.
russ in macros/latex/contrib
Russian letters in TEX control sequences, Russian
hyphenation, and more, independent of babel.
rvwrite in macros/latex/contrib
Help for insufficient \write registers.
serbianpart in macros/latex/contrib
Part numbers in Serbian.
simplecd in macros/latex/contrib
CD/DVD covers for printing.
skb in macros/latex/contrib
Build document repository for long-lived documents.
skeycommand in macros/latex/contrib
Create commands using parameters and keys together.
spot in macros/latex/contrib/beamer-contrib
Spotlight highlighting for Beamer.
suftesi in macros/latex/contrib
Typesetting theses, especially in the humanities.
unicode-math in macros/latex/contrib
Unicode math support for XqTEX and LuaTgX.
undolabl in macros/latex/contrib
Override existing labels, especially automatically
generated ones.
uowthesis in macros/latex/contrib
University of Wollongong thesis class.
yt4pdf in macros/latex/contrib
Play YouTube videos in a PDF.

macros/luatex
lualibs in macros/luatex/generic
Lua modules useful for general programming.
luaotfload in macros/luatex/generic

OpenType support for LuaTEX (based on but outside
of ConTEXt).

* luatexbase in macros/luatex/generic

Basic facilities for LuaTEX macro programmers.
luatextrace in macros/luatex/generic
User-level LuaTEX macro goodies.

macros/plain

present in macros/plain/contrib
Customizable presentations in plain TEX.

support
adobemapping in support
Collected Adobe cmap and pdfmapping files.
dktools in support
Image-related tools and libraries.
ltxfileinfo in support
Print information about a KTEX package to stdout.

texlog_extract in support
Colored summary of messages from a log file.

TUGboat, Volume 31 (2010), No. 3

ArsTgXnica #9 (October 2010)

ArsTpXnica is the journal of Gr, the Italian TEX
user group (http://www.guit.sssup.it/).

GIANLUCA PIGNALBERI, Editoriale [From the
editor]; pp.3—4
A short overview of the present issue.

GIANGIACOMO BRAVO, Reciprocita e
attaccamento al gruppo nel forum Gjr
[Reciprocity and appreciation for the GJIr
forum group|; pp.5-14

This paper studies the provision of public goods
in open-source software support forums. Data from
the GJIT were analyzed to find individual motives
for offering help. Using this methodology, we were
able to split the forum participants into a small in-
trinsically motivated core group and a much larger
group motivated mainly on the basis of reciprocity.
The motives of the two groups were largely comple-
mentary and jointly produced a situation where the
overwhelming majority of questions received an ap-
propriate answer. At the same time, the core group
played a fundamental role and was the key in ex-
plaining the forum’s success. Without this group, the
forum’s performance would have been considerably
diminished, probably down to a level that would not
justify its existence.

ToMMASO GORDINI, Scrivere un indirizzo postale
[How to write a postal address]; pp.15-23

We’ll describe all the rules to write postal ad-
dresses exactly according to Italian standard. You
can find here also a simple document class to print
addresses directly on an envelope with XTEX.

GIANLUCA PIGNALBERI, Cicli, test e calcoli
angolari per disegni non banali con METAPOST
[Loops, tests and angular computations for
non-trivial drawings in METAPOST]; pp. 24-30

A fair number of introductory guides to META-
POST are available online; a good selection comes
along with the TEX distributions. Unfortunately,
sometimes the authors don’t succeed in treating the
topics fully: some details get hidden, lost or left
to other similar documents. In this paper we’ll see
how some non-trivial drawings for a short thesis on
Galileo Galilei were done, having the chance to study
in detail some of the manuals’ explanations.

GusTAvO CEVOLANI, Composizione automatica
dell’indice dei nomi con biblatex [Automatic
composition of a list of names with biblatex];
pp. 31-38

Most academic and specialist publications are
required to contain an index of names. The biblatex

229

package offers, for the first time, a simple and direct
way of automatically generating the index of names.
This paper briefly explains how to generate the index
of names using biblatex, with reference to some
minimal working examples. The paper assumes that
the reader is familiar with BIBTEX and the makeidx,
index and biblatex packages.

IvAN VALBUSA, Creare stili bibliografici
con biblatex: l’esperienza del pacchetto
biblatex-philosophy [How to create
bibliographic styles with biblatex: the experience
of the package biblatex-philosophy]; pp.39-50
The aim of this article is to describe the genesis
and the main features of the bibliography and cita-
tion styles provided by the biblatex-philosophy
package; moreover, it provides the basic concepts
to create a style for use with Philipp Lehman’s
biblatex package. This article requires basic knowl-
edge of BIBTEX and biblatex.

Luict SCARSO, Fell Types in ConTEXt; pp. 51-56
In this paper we will briefly show how to install
and use an OpenType font with ConTEXt MKIV.
We will use the Fell Types fonts as in M. Dominici’s
paper “Utilizzo di caratteri TrueType con KTEX. Un
esempio pratico: i Fell Types”. A problem with an
unusual font parameter is described and a solution

offered by ConTEXt MKIV is discussed.

ENRICO GREGORIO, L’arte esoterica di scrivere in
cirillico con BTEX [The esoteric art of writing in
Cyrillic with BTEX]; pp.57-73

Writing words in the Cyrillic script with BTEX
is easy once we know some small tricks of the trade.
With babel it’s also easy to write a document with
longer parts in a language using the Cyrillic script.
We describe also some small defects of babel in this
area and some ways to correct them.

CLAUDIO BECCARI and HEINRICH FLECK, I
mark, questi sconosciuti [Marks, those unknowns];
pp. 7478

Marks are useful for typesetting headers, but
their inner workings are rather mysterious. We try
to uncover their secrets with an important example:
the composition of a dictionary.

[Received from Gianluca Pignalberi.]

230

MAPS 40 (2009)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

MAPS 40 (Spring 2010)

TAacO HOEKWATER, Redactioneel [From the
editor]; p.1
Overview.

HANS HAGEN, The font name mess; pp.2-8

Font names as well as file names of fonts are
highly inconsistent across vendors, within vendors
and platforms. As we have to deal with this matter,
in ConTEXt MKIV we have several ways to address a
font: by file name, by font name, and by specification.
In this article I describe all three.

KEES VAN DER LAAN, Circle Inversions; pp.9-65

Circle inversions are exercised and drawn with
PostScript operators which are also included in this
plain TEX article. Interesting pictures will be shown,
resulting from inversion of straight line pieces and
other procedures.

I demonstrate a way to calculate the circle of
anti-similitude, by which two circles are inverses
of each other. Furthermore, I show how one can
transform two distinct circles into two concentric
circles, and how to draw a circle orthogonal to a
circle which passes through one or two points within
the circle is done via the circle inversion technique.

The above is generalized into finding the circle
which cuts the boundary at an arbitrary angle, e.g.
80 degrees, and passes through a point within the
circle. Orthogonal circular arcs can form an Escher-
like grid, as he used in his Circle Limit drawings.
Four variants of the grid of Circle Limits IIT have
been included. The first cuts the boundary at 80
degrees, the second at 90 degrees, and the third with
a mixture of both. The fourth is Coxeter’s solution.

A smiley pattern is inverted in (orthogonal) cir-
cular arcs within a circle with the aid of PostScript’s
pathforall by (repeated use of) circle inversion.
How to draw a circle orthogonal to 1, 2 or 3 other
distinct circles is shown. Apollonius’ problem is
solved by the use of the circle inversion transforma-
tion and also by transforming the three quadratic
equations into one non-linear equation and a 2x2
system of linear equations, and then solving these
equations in PostScript and MetaPost. A closer look
yields that we only have to solve one quadratic equa-
tion in r, the radius of the wanted circle, in order to
obtain the solution of Apollonius’ problem.

Coding problems in MetaPost will be mentioned
and circumvented. I demonstrate the way one can

TUGDboat, Volume 31 (2010), No. 3

create and use a PostScript library. A plea is made
for creating and maintaining a PostScript library of
operators, graphics and utilities. A snapshot of this
growing library is included. A few tiny but handy
PostScript operators are given next to a (numerical)
PostScript operator to solve a 3x3 linear system of
equations, where partial pivoting is implemented
and the calculations are done with the accuracy of
the underlying computer arithmetic, which is much
better than MetaPost’s accuracy at present. How to
overload a PostScript operator, e.g. length, is given.
The question of whether the PostScript library can
be used in MetaPost is answered.

The core of the paper is twofold: first the re-
discovery that Apollonius’ problem is solved by the
solution of a quadratic equation, and second the
Apollonius operator, which reflects this rediscovery
and can be used to obtain all 8 solutions of Apollo-
nius’ problem. Another gem is Apollonius2, which
is suited for the case that one circle contains the
other two. The culmination of it all is the operator
radical for drawing the radical circle of three given
distinct circles.

EDITORIAL, EuroTEX 2010 announcement; p. 66
(Cancelled.)

HANs HAGEN, Grouping in hybrid environments;
pp.67-71

[Enhancements to groups for, e.g., background
colors and underlining, in ConTEXt MKIV.]

EbpIToRIAL, Fourth ConTEXt meeting
announcement; pp.72-72

September 13-18, Brejlov (Prague), Czech Re-
public.

Luiact Scarso, OpenType PostScript fonts with
unusual units-per-em values; pp. 73-79

OpenType fonts with PostScript outlines are
usually defined in a dimensionless workspace of 1000 x
1000 units per em (upm). Adobe Reader exhibits
strange behaviour with PDF documents which em-
bed an OpenType PostScript font with unusual upm.
This paper describes a solution implemented by
LuaTgX that resolves this problem.

PIET vAN OOSTRUM, Een uittreksel uit de recente
bijdragen in het CTAN archief [Selected recent
contributions to CTAN]; pp.80-83

This article describes some recent contributions
to the CTAN archive (and other Internet sources).
The selection reflects what interests me and what I
think others may be interested in. It is, therefore, a
personal choice, not a comprehensive review.

[Received from Wybo Dekker.]

TUGboat, Volume 31 (2010), No. 3

The PracTgX Journal 2010-1

The PracTgX Journal is an online publication of the
TEX Users Group. Its web site is http://tug.org/
pracjourn. All articles are available there.

Issue theme: IMTEX academic work bench.

FraNciscO REINALDO, From the Editor
Editorial; next issue: TEX for teachers.

THE EDITORS, News from Around

Knuth volume 4 and Google talk; CSI typeface;
other journals; one million KXTEX math formulas at
latexsearch.com.

CLAUDIO BECCARI, Some PDF/A tricks

This short contribution explains how to fix some
font problems when creating PDF/A documents, the
new standard for archival PDF documents.

ALAN BRASLAU, Chemical structures with
PPCHTEX

Chemical formulas and chemical structures can
be included in a IMTEX or a ConTEXt document easily
using the PPCHTEX macros. We present here a
simple introduction to their use. Additionally, a more
extensive tutorial is available in the documentation
of the package.

Kraus DoHMEN, Dual screen presentations with
the IXTEX beamer class under X

We show how the ‘X Resize, Rotate and Reflect
Extension’ of the X Window System can be used to
display a IMTEX beamer presentation on one or two
beamers while simultaneously displaying the output
of both beamers on the lecturer’s display. If only one
beamer is used, the lecturer’s display might show
both the output of the beamer and hidden notes.

MASSIMILIANO DoMINICI, BTEX e CSV [BTEX
and CSV]

In this paper we will present some techniques
and a few examples about handling data in comma-
separated-value format. We will focus mainly on two
packages specifically aimed at this purpose: datatool
and pgfplots. (In Italian.)

ARACELE GARCIA and ARTHUR BUCHSBAUM,
Sobre as ferramentas em KTEX que os estudantes
de Loégica deveriam conhecer [About IATEX tools
that students of logic should know]

In this article, we share our experience with
PracTEX readers about ITEX and the toolbox that
students of Formal Logic of the Master in Computer
Science from the Federal University of Santa Cata-
rina (UFSC) in Brazil are using to prepare handouts,
books, articles, dissertations and solving exercises.

231

We present some tools we have found useful for stu-
dents who are developing projects in formal logic:
proof styles, useful sites, styles of numbering and
referencing of proclamations, references in BIBTEX
format and suggestions of reading. The work done
in this area requires a certain formality and rigor,
thus we believe that such features can be successfully
aimed at by the use of KTEX. (In Portuguese.)

MARCO ANTONIO GOMEZ-MARTIN and PEDRO
PABLO GOMEZ-MARTIN, Continuous integration
in ITEX

Have you ever co-written a paper using IATEX
together with some version control system such as
SVN? Have you ever updated your local copy and
the compilation become broken due to a previous
bad commit? Continuous integration avoids this
problem using an auxiliary server that constantly
checks the sanity of the repository, compiling the
ITEX documents after each commit, and notifying
authors of possible problems. This paper describes
how to configure this environment. Although the
configuration effort is detailed, it is done only once
and provides many benefits. In addition to doing
compilation tests, all authors can be automatically
informed by email when a new version is committed,
and the current .pdf version can be made available
to third parties on the Web.

IvAN GRIFFIN and ITA RICHARDSON, Using KTEX
for qualitative data analysis

IMTEX, in addition to its typesetting role, has
considerable potential as a tool to assist in workflow
automation for Qualitative Data Analysis (QDA) of
collected research data.

RICHARD HARDWICK, Automatic report
generation with your text editor, Perl, and IXTEX

I describe a simple system for producing stan-
dard evaluation reports. The evaluator writes plain
text files. A Perl script reads the text files and uses
the Perl module Template.pm, with a ready-made
ITEX template, to generate the final ITEX report.

JiM HEFFERON, Giving away a book
[Reprinted with revisions in this TUGboat.]

TomAs MORALES DE LUNA, Useful vector graphic
tools for ITEX users

This paper presents some useful tools for creat-
ing vector graphics that can be included in KTEX
documents. Of all the tools available, we focus on
those that can produce graphics easily, and that can
include any BTEX math formula. In particular, we
present three useful tools: Xfig, LaTeXDraw, and
Matplotlib. While the two first are intended to

232

produce sketches and figures, the last will produce
graphs, charts and contours.

FRANCISCO REINALDO ET AL., Gerando
Certificados Académicos e inserindo Assinaturas
Digitalizadas [Generating academic certificates]

In this paper we present how ordinary users can
generate academic certificates with scanned signa-
tures automatically by using CSV and a few instruc-
tions in BTEX 2¢. (In Portuguese.)

FRANCISCO REINALDO ET AL., Doxygen e

IATEX 2¢: As definitivas ferramentas para
documentar seu cédigo-fonte [Developing software
with Doxygen & KTEX]

In this paper we present how programmers can
document source code and have updated reports
during the elaboration/implementation phase. We
focus mainly on two tools specifically aimed at this
purpose: Doxygen and KTEX 2¢. (In Portuguese.)

FrRANCISCO REINALDO ET AL., Projeto
Interdisciplinar (PI) em BTEX 2¢: Um modelo
de relatério para a academia [A student report
template]

In this paper we present an example of a tech-
nical report commonly used by students to present
their academic research. (In Portuguese.)

FRANCISCO REINALDO ET AL., Guia Visual
Definitivo para Instalacao de ITEX 2¢ e suas
Ferramentas de Apoio [Six BTEX tools (with
videos)]

In this paper we present the most promising
IATEX 2¢ tools for common users and how these tools
should be fine-tuned. We focus mainly on six het-
erogeneous tools specifically aimed at this purpose:
MiKTEX, GSview, eXPert PDF Reader, Texmaker,
JabRef, and LaTable. (In Portuguese.)

Luict ScArso, Playing with Flash in ConTEXt
MkIV

A first attempt to adapt flashmovie.sty to
ConTEXt MKIV to produce a flash movie with Meta-
Post and swftools.

HERBERT SCHULZ, Enhancing command
completion for TeXShop

IXTEX environments and commands are rather
wordy markup. These make the intentions of the
author easy to determine but more difficult to write.
Using command completion, authors can write a
few letters and trigger an expansion into complete
environments and commands along with ways of
going between arguments of those commands. In
this paper I present an enhancement to command
completion in TeXShop that allows more consistent
completions and inclusion of short comments to help

TUGDboat, Volume 31 (2010), No. 3

authors remember the order and contents of the
arguments to those environments and commands.

FRANCESC SUNOL, Tools for creating IATEX-
integrated graphics and animations under
GNU/Linux

This paper describes how to easily create graph-
ics and animations that can be included in KTEX
documents. This article discusses three kinds of
figures: plots, schematics, and pictures. The tools
presented here can quickly generate plots, and are
based on simple Gnuplot and Bash scripts that dis-
play the final result on the screen. Ipe is an excellent
program to deal with complex figures and schematics,
and the animate package is used to make a series
of figures change over time to simulate a movie. All
the programs used in this article are free software.

EvaN WESSLER, An argument for learning BTEX:
Benefits beyond typesetting
[Published in TUGboat 31:1.]

DaviD WALDEN, Travels in TEX Land: memoir,
TtH, and a booklet signature

In this column in each issue I have mused on
my wanderings around the TEX world. In this issue
I describe three efforts. In section 1, I describe my
first attempt to use the memoir class to produce a
book. In section 2, I describe my first time using
TtH to convert from IATEX to HTML. In section 3, I
describe creating a 16-page booklet signature using
a method described by another author in an earlier
issue of this journal.

This will be my final TEX Land column in this
journal. I am pleased to have provided a column
for every previous issue, but it is now time for me
to focus on other things. I won’t stop using TEX,
however, and probably will continue to write about
TEX once in a while, but without the concerns of a
regular column. I wish the editors of this journal
“all the best” as they continue publication of The
PracTgX Journal.

FRANCESCO REINALDO ET AL., Book review:
ETEX Quick Start

In this paper we review the book KTEX Quick
Start: A first guide to document preparation from
a user’s viewpoint, and give a candid assessment of
its contents. (In Portuguese and English; the book
reviewed is in English.)

THE EDITORS, Ask Nelly

How can I have the author name for a quotation
set on the same line as the quotation or on a new
line, according to space requirements?

THE EDITORS, Distractions: Typesetting a fancy
curriculum vitae

TUGboat, Volume 31 (2010), No. 3

Zpravodaj 20(1-2) and 20(3), 2010

Editor’s note: Zpravodaj is the journal of (FT'UG,
the TEX user group oriented mainly but not entirely
to the Czech and Slovak languages (http://www.
cstug.cz).

Zpravodaj 20(1-2), 2010

PAVEL STRIZ, Z letnich dnt roku 2010 [Greetings
from the Summer holidays 2010], p. 1.

MARTIN BupAJ, Divide et impera: program
findhyph [Divide and conquer — the findhyph
program|, pp. 2-5

The article presents a simple computer program,
findhyph, which generates a list of all words hyphen-
ated in documents processed by TEX. This program
can be downloaded from CTAN.

Jiki RYBICKA, PETRA TALANDOVA, JAN
PRICHYSTAL, Poéitacova podpora vybéru
optimalnich programu pro zpracovani textu
[Computer-aided optimal program selection for
document processing], pp. 6-13

This article deals with generalization of possi-
bilities for preparing electronic documents of various
types. Computer support is proposed for optimiza-
tion of program equipment selection. It takes into
account user requirements for different programs and
document properties.

PAVEL STRiZ, RADEK BENDA, Editace PDF
souboru aneb O jednom dnu [Editing PDF files],
pp. 14-22

The real-world problem of deleting specific text
parts in PDF files of hundreds of pages occurred out
of the blue sky and the deadline was to finish the task
within 24 hours. This article presents our experience
with editing PDF files using different proprietary soft-
ware and trial versions as well as tools and programs
from the world of open source software.

DEeNIS ROEGEL, Kulové plochy, hlavni kruznice
a rovnobézky [Spheres, great circles and parallels],
pp- 23-38

[Czech translation of the English article from
TUGboat 30:1. Translation by Pavel Stiz.]

HERBERT V0sS, The current state of the PSTricks
project [Soucasny vyvoj a novinky v bali¢cich
PSTricks|, pp. 39-67

[Published in TUGboat 31:1.]

DENIS ROEGEL, Anatomy of a macro (tutorial)
[O rozboru jednoho makra (tutoridl)], pp. 68-76
[Published in TUGboat 22:1/2.]

233

J. H. SILVERMAN, TEX reference card (for plain
TEX) [Syntaxe jazyka TEX (formétu plain TEX)],
pp. 7778

Reprint of http://refcards.com/docs/
silvermanj/tex/tex-refcard-a4.pdf.

Kraas BaLs, ToNy GRAHAM, Extensible
stylesheet language requirements, version 2.0,
working draft, 26 March 2008 [Pozadavky na
XSL-FO verze 2.0], pp. 79-120

The XSL 1.1 specification defines the features
and syntax for the Extensible Stylesheet Language
(XSL), a language for expressing stylesheets. This
paper enumerates the collected requirements for a
2.0 version of XSL. There are two parts to XSL: XSL
Transformations (XSLT) for transformation of doc-
uments and XSL Formatting Objects (XSL-FO) for
formatting of documents. This is the requirements
document for XSL-FO and not for XSLT.

This article is approximately a printed version
of http://www.w3.org/TR/xslfo20-req/.

PAVEL STRIZ, VIT ZYKA, MICHAL MADR,
Nové a staronové knihy [New and older books],
pp. 121-126

Michel Goossens, Frank Mittelbach,
Sebastian Rahtz, Denis Roegel, Herbert Vof:

The BTEX Graphics Companion, second edition,
Addison-Wesley Professional, 2007, in English.

Herbert Vofi: PSTricks — Grafik mit
PostScript fiir TEX and ETEX, fifth edition,
DANTE e.V., 2008, in German.

Herbert Vof3: PSTricks: Graphics and
PostScript for TEX and ETEX, first edition,
Cambridge, 2010, in English.

Bill Casselman: Mathematical Ilustrations: A
Manual of Geometry and PostScript, first edition,
2005, in English. Also available online at http:
//www.math.ubc.ca/~cass/graphics/manual/.

Frantisek Storm: Eseje o typografii [Essays on
typography]|, first edition, Revolver Revue, Prague
2008, in Czech.

Radana Lencova: Rozhovory o pismu
rukopisném [Interviews on Handwriting], first
edition, Svet Publishers, Prague, 2007, in Czech.
Interviews with 24 leading figures of Czech
typography and graphic design, including samples
of their handwriting and work.

Radana Lencova: Comenia Script, prakticky
manudl [Comenia Script, Manual], first edition,
Svet Publishers, Prague, 2008, in Czech. Practical
Manual for a new handwriting style for schools.

Jan Jerabek: Grafologie — vice nez diagnostika
osobnosti [Graphology — more than a personality

234

diagnosis]|, fifth edition, Argo, Prague, 2003, in
Czech.

Vilém Schonfeld: Ucebnice védecké grafologie
pro zacatecniky [Textbook on scientific graphology
for beginners], fourth edition, Elfa, Prague, 2007,
in Czech.

JANO KuLA, PAVEL STRiZ, (TUG ¢tendre srdetné
zve! [An invitation to the fourth ConTEXt meeting
and the third TEXperience conference], p. 127128

EDITORS, (FTUG ¢lenem CrossRef [(STUG is a
new member of CrossRef], p. 129-131

EDITORS, Redakéni pozndmky a pokyny autorum
[Notices and instructions for authors], pp. 132-136
In Czech and English.

Zpravodaj 20(3), 2010

PAVEL STR{Z, Uvodnicek [Welcoming letter from
the editors], p. 137.

DENIS ROEGEL, Jednoduché makro suanpan na
kreslen{ ¢inského a japonského abaku [Simple
macros for drawing Chinese and Japanese abaci],
pp. 138-151

[Czech translation of the English article from
TUGboat 30:1. Translation by Pavel Stiiz.]

TiMoTHY EYRE, Typesetting Japanese with pTEX
[Sazba japonstiny pomoci pTEXu], pp. 152-173

PTEX is a TEX-like typesetting system that is
specifically designed for typesetting Japanese and is
widely used in Japan. This article describes how to
acquire, set up and use a pTEX system in practice,
with an emphasis on font management. It also pro-
vides basic background information on Japanese text
processing and alternatives to pTEX.

Latest news: pTEX and pI4TEX formats are now
available for your convenience in TEX Live, starting
in 2010.

KazuoMmi KuNI1vosHI, Japanese formatting rules
for XqTEX [Pravidla sazby japonstiny v XgTEXu],
pp- 174-175

This is a two-page report with information about
the reasons and the existence of the genzi package
which sets Japanese formatting rules for X4TEX. The
package, samples and more comments can be viewed
and downloaded from the author’s web site, http:
//kuniyoshi.fastmail.fm/xetex/.

KEN LUNDE, OpenType Japanese Font Tutorial:
Kazuraki [Kazuraki: tutoridl k japonskému OTF
pismul, pp. 176-198

Adobe Systems’ Type Engineering & Design
team in Japan has developed a ground-breaking
and innovative new typeface design that breaks the

TUGDboat, Volume 31 (2010), No. 3

mold that has constrained Japanese typefaces for
decades. The typeface design, created by Adobe’s
own Ryoko Nishizuka, was inspired by the calligra-
phy of the 12th century Japanese calligrapher and
writer Fujiwara-no-Teika, and its final production to
produce a functional OpenType font leveraged three
powerful AFDKO (Adobe Font Development Kit for
OpenType) tools, tz, mergeFonts, and rotateFont, to
implement its complex metrics.

Kazuraki is unique among mainstream Japanese
typefaces in that it is fully proportional, in both
writing directions. Some glyphs are wider than they
are tall, and some are taller than they are wide, and
this is reflected in their metrics. For this reason,
and because subtle shifting is required for correct
positioning of each glyph, there are separate glyphs
for both writing directions. In other words, for the
1,082 kanji that are supported in the current version,
the font contains 1,082 glyphs for horizontal use, and
1,082 glyphs for vertical. In addition, Kazuraki also
includes a significant number of two-, three-, and
four-character hiragana ligatures for vertical use.

The tutorial that is reprinted here in its en-
tirety is designed to guide font developers in build-
ing special-purpose OpenType fonts, using Kazuraki
as an example of how to build a fully-proportional
Japanese font. The current version is always available
at http://www.adobe.com/devnet/font/pdfs/
5901 .Kazuraki_Tutorial.pdf.

The Kazuraki specimen book, which demon-
strates how this font can be used, is available at
http://stored.adobe.com/type/browser/pdfs/
Kazuraki_SPN.pdf.

TimMoTHY EYRE, Creating a kanji stroke order
font [Jak na vyrobu pisma kandzi s pofadim tahu],
pp- 199-207

This article describes how a font that displays
kanji stroke orders can be created from thousands of
SVG files containing this information.

The latest version of Kanji Stroke Orders Font
(KSOF) can be downloaded from the author’s site,
http://sites.google.com/site/nihilistorguk/.

TimMoTHY EYRE, PDFdiff: A PDF file comparison
Script [PDFdiff: skript srovndvajic{ PDF soubory],
pp- 208-214

A Python script that can be used to take two
PDF files and automatically process them with pdftk,
Ghostscript, ImageMagick and XHTEX to produce a
PDF file that shows the differences between the two
input files.

JicoDp JIANG, Chinese TEX typesetting: Past
and present [Sazba ¢instiny v TEXu: historie
a soucasnost], pp.215-219

TUGboat, Volume 31 (2010), No. 3

The article introduces and gives an overview of
Chinese TEX typesetting from its early beginnings
to the present day.

DENIS ROEGEL, Sudoku s vepsanymi kandzi:
integrace ¢inskych glyfu s grafikou na trovni
METAPOSTu [Kanji-Sudokus: Integrating Chinese
and graphics|, pp. 220-226

[Czech translation of the English article from
TUGboat 29:2. Translation by Pavel Stiiz.]

PETER WILSON, The sudoku bundle [Balicek
sudokubundle], pp. 227241

The sudoku bundle provides a coordinated set
of packages for displaying, solving, and generating
Sudoku puzzles. This article describes some of the
internal aspects of the packages.

PAVEL STRiZ, MICHAL MADR, Nové a staronové
knihy [New and older books], pp. 242-249

Ken Lunde: CJKV Information Processing: Chi-
nese, Japanese, Korean & Vietnamese Computing,
second edition, O’Reilly Media, 2008.

Jukka K. Korpela: Unicode Explained: Interna-
tionalize Documents, Programs, and Web Sites, first
edition, O’Reilly Media, 2006.

The Unicode Consortium: The Unicode Stan-
dard, Version 5.0, fifth edition, Addison-Wesley Pro-
fessional, 2006.

Richard Gillam: Unicode Demystified: A Prac-
tical Programmer’s Guide to the Encoding Standard,
first edition, Addison-Wesley Professional, 2002.

Joe Becker, Richard Gillam, Mark Davis: Uni-
code Guide: The Ultimate Reference Guide to the
Universal Character Encoding Standard, first edition,
Barcharts, 2006.

Ulrik Vieth: Book review: Fonts & Encodings
by Yannis Haralambous, first edition, O'Reilly Media,
2007. Translation to Czech by Marcel Svitalsky.

KAREL HORAK, Osmnécty BachoTEX: Typografové
a programatoii — vzajemné inspirace (April 30 —
May 5, 2010) [Typographers and programmers:
mutual inspirations — BachoTEX 2010], http:
//wwu.gust.org.pl/bachotex/2010/, pp. 250-252

235

PAVEL STRIZ, Denn{ pasmo seminait TypeTalks
2010 [Impressions from TypeTalks 2010],
http://typetalks.com/Symposium2010/,

pp- 253-259.

MirLoS BREJCHA, Svét knihy Praha 2010
[16th International Book Fair and Literary
Festival, Prague Exhibition Grounds, 2010},
http://www.bookworld.cz/en/ and http:
//www.svetknihy.cz/en/, pp. 260-261

THE EXECUTIVE BOARD oF (JTUG, Zapis z valné
hromady (STUG [A report from an annual (GTUG
meeting], pp. 262-264

TypeTalks 2010 Symposium

The theme of this conference in Brno, Czech Repub-
lic, was type. This is a broad area embracing the
history of type, the design of type, type education,
the use of type (typography) and much more. The
key criteria for the acceptance of a talk was that it
have educational value.

There were seven invited speakers:

o Florian Hardwig (D): Localize! The dialects of
handwriting in type design;
e Rob Keller (US/D): Font technology is crazy!;

o Michael Hochleitner (AT) A contemporary view
on the relationship of lettering and type;
e Tom4s Brousil (CZ): A new font family Tabac;
e Dan Reynolds (US/D) The passion of the young,
multi-script type designer;
e Dan Rhatigan (US/UK): How I learned to stop
worrying and love bad type; and
e Veronika Burian (CZ/D): Typographic match-
making.
The conference web site is http://www.typetalks.
com.

[Received from Pavel Stiiz.]

236

Die TgXnische Komddie 2010/3

Die TgXnische Komédie is the journal of DANTE
e.V., the German-language TEX user group (http:
//wwu.dante.de). (Editorial items are omitted.)

ACHIM SCHAFFRINNA, Anatomie der Buchstaben
[The anatomy of letters|; pp.11-15

Compared to the other article this article is not
TgX-related but rather offers basic knowledge about
typography. It is a work in progress, the author
encourages all readers to participate in explaining the
introduced terms and their graphical representation.
Certainly there are more terms perfectly fitting into
this list.

HEIKO OBERDIEK AND CHRISTINE ROMER,
Anzeigen der Trennstellen [Showing hyphenated
words]; pp. 16-16

Sometimes it may be of interest to see how
TEX will potentially hyphenate words. With the
macro \hyphenated{...text...} the output shows
all possible hyphenations of every word.

MAaRco DANIEL, Das Paket mdframed [The
mdframed package|; pp.18-21

What might another frame package be good for?
I asked myself this question as well, since so far I
had been satisfied by the framed package written by
Donald Arseneau. But when I realized I could not
avoid the closing line on the first and the beginning
horizontal line on the second page and searching the
web also revealed no results for this issue I decided to
implement this, based on the framed package with
the help of 1istings.sty which offers this option.

UWE ZIEGENHAGEN, In Tabellen rechnen mit
spreadtab [Calculating in tables with spreadtabl;
pp- 22-26

With a syntax comparable to common spread-
sheet applications the spreadtab package by Chris-
tian Tellechea offers simple calculations inside KTEX
tables. In this article the package is introduced and
used in a more complex example to typeset invoices.

UWE ZIEGENHAGEN, PocketMods mit IATEX
erstellen [Creating Pocketmods with BTEX];
pp. 27-32

Pocketmods are small booklets which consist of
a single piece of paper that is cut and folded in a
special way. In this article I show several ways to
create such a Pocketmod.

ROLF NIEPRASCHK, Zierlinien [Trimlines|;
pp-33-34

In the following it is shown with the example
of trim lines (also called “English lines”) how freely

TUGboat, Volume 31 (2010), No. 3

available graphics files found on the Internet can be
used in documents.

DoOMINIK WAGENFUHR, Unicode-Zeichen in IATEX
nutzen [Using Unicode characters in TEX];
pp- 35-37

The time when special characters such as Ger-
man umlauts had to be encoded as e.g., "a are long
gone. Thanks to UTF-8 support it is possible today
to even use other special characters with IXTEX.

DoMINIK WAGENFUHR, IATEX-Symbole: Einfiigen
mit LSS [Inserting WTEX symbols with LSS];
pp- 3841

In the previous article we explained how to use
Unicode characters with A TEX documents. Another
alternative for finding symbols is the IXTEX Symbols
Selector, LSS.

[Received from Herbert Vo&.]

This TUGDboat issue’s epigraph

The quotes on the title page of this TUGboat is-
sue come from email between the editors and Chuck
Bigelow in the course of discussing future Lucida
projects. Chuck suggested the following references
from The Journal of Typographic Research for any-
one who is curious about the slashed-zero debate:

Dirk Wendt, “O or 077, vol. 3, no. 3, July 1969,
pp- 241-248.

Allen G. Vartabedian, “A Proposed Fontstyle
for the Graphic Representation of the Oh and
Zero”, vol. 3, no. 3, July 1969, pp. 249-258.

Hermann Zapf, “Letter to the Editor” re: Var-

tebedian, “A Proposed Fontstyle ...”, vol. 4,
no. 2, Spring 1970, pp. 179-180.

Allen G. Vartabedian, “Reply to Zapf”, vol. 4,
no. 2, Spring 1970, pp. 181-183.

Chuck adds:

There’s doubtless a lot more of such stuff,
especially if you include screeds on-line, but
these thoughtful papers and letters were pub-
lished early in the era of computerized ty-
pography and were written by an illustrious
designer (Zapf), a good academic psychologist
studying typography (Wendt), and an engi-
neer working on related problems at Bell Labs
(Vartabedian), so they show the diversity of
views when such issues were emerging.

Enjoy!

TUGDboat, Volume 31 (2010), No. 3

237

Calendar

2010

Nov 5—
Mar 20

Nov 68

Nov 19

“Marking Time”: A traveling juried
exhibition of books by members of the
Guild of Book Workers. Dartmouth
College, Hanover, New Hampshire.
Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw
The Eighth International Conference on
the Book, University of St. Gallen,

St. Gallen, Switzerland.
booksandpublishing.com/conference-2010
“Letterpress: Forward thinking”,

St Bride Library, London, England.
stbride.org/events

2011

Jan 13-16

Jan 28

Feb 1

Apr 29—
May 3

College Book Art Association
Biennial Conference, “Word,
Image, Text, Object”, University
of Indiana, Bloomington, Indiana.
www.collegebookart.org

“The Design of Understanding”,
St Bride Library, London, England.
stbride.org/events

TUG election: nominations due.
tug.org/election

EuroBachoTEX 2011: 19th BachoTEX
Conference, “Aesthetics and
effectiveness of the mussage, cultural
contexts”, Bachotek, Poland.
www.gust.org.pl/bachotex/
bachotex2011-en

Jun 19-22 Digital Humanities 2011, Alliance of
Digital Humanities Organizations,
Stanford University, Palo Alto, California.
www.digitalhumanities.org

Jul TypeCon 2011, New Orleans, Louisiana.
WWW.typecon.com

Jul 14-17 SHARP 2011, “The Book in Art & Science”,
Society for the History of Authorship,
Reading & Publishing. Washington, DC.
www.sharpweb.org

Aug 7-11 SIGGRAPH 2011, Vancouver, Canada.
www.siggraph.org/s2011

Sep 14-18 Association Typographique Internationale
(ATypl) annual conference,
Reykjavik, Icelend. www.atypi.org

Sep 19—-24 The fifth ConTEXt user
meeting, Porquerolles, France.
meeting.contextgarden.net/2011

Oct 14-15 American Printing History Association’s
36" annual conference, “Printing
at the Edge”, University of
California, San Diego, California,
www.printinghistory.org/about/
calendar.php

Oct 14-16 The Ninth International Conference
on the Book, University of Toronto,
Ontario, Canada.
booksandpublishing.com/conference-2011

TUG 2011
Cairo, Egypt.

Nov 14-17 The 32" annual meeting
of the TEX Users Group.
tug.org/tug2011

Status as of 1 November 2010

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.

Other calendars of typographic interest are linked from tug.org/calendar.html.

238

TUGboat, Volume 31 (2010), No. 3

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you'd like to
be listed, please see that web page.

Aicart Martinez, Merce

Tarragona 102 4° 2¢

08015 Barcelona, Spain

+34 932267827

Email: m.aicart (at) ono.com

Web: http://www.edilatex.com
We provide, at reasonable low cost, TEX and IATEX
typesetting services to authors or publishers world-
wide. We have been in business since the beginning of
1990. For more information visit our web site.

Dangerous Curve

PO Box 532281

Los Angeles, CA 90053

+1 213-617-8483

Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html
We are your macro specialists for TEX or IATEX fine
typography specs beyond those of the average IATEX
macro package. If you use XfTEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and IATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a

TEX book.

Hendrickson, Amy

Brookline, MA, USA

Email: amyh (at) texnology.com

Web: http://www.texnology.com
IATEX macro writing our speciality for more than
25 years: macro packages for major publishing
companies, author support; journal macros for
American Geophysical Union, Proceedings of the
National Academy of Sciences, and many more.

Scientific journal design/production/hosting,
e-publishing in PDF or html.

Hendrickson, Amy (cont’d)

IATEX training, at MIT, Harvard, many more
venues. Customized on site training available.

Please visit our site for samples, and get in touch.
We are particularly glad to take on adventurous
new uses for IATEX, for instance, web based report
generation including graphics, for bioinformatics or
other applications.

Peter, Steve

295 N Bridge St.

Somerville, NJ 08876

+1 732 306-6309

Email: speter (at) mac.com
Specializing in foreign language, linguistic, and
technical typesetting using TEX, IATEX, and ConTEXt,
I have typeset books for Pragmatic Programmers,
Oxford University Press, Routledge, and Kluwer,
among others, and have helped numerous authors turn
rough manuscripts, some with dozens of languages,
into beautiful camera-ready copy. I have extensive
experience in editing, proofreading, and writing
documentation. I also tweak and design fonts. I have
an MA in Linguistics from Harvard University and live
in the New York metro area.

Shanmugam, R.

No.38/1 (New No. 65), Veerapandian Nagar, Ist St.

Choolaimedu, Chennai-600094, Tamilnadu, India

+91 9841061058

Email: rshanmugam92 (at) yahoo.com
As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled
various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
IATEX 2¢, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

TUGDboat, Volume 31 (2010), No. 3

Sievers, Martin

Im Treft 8, 54296 Trier, Germany

+49 651 4936567-0

Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com
As a mathematician with ten years of typesetting
experience I offer TEX and IATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BIBTEX, biblatex) to typesetting your
math, tables or graphics — just contact me with

239

Veytsman, Boris

46871 Antioch Pl.

Sterling, VA 20164

+1 703 915-2406

Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and IATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom IATEX packages, conversions and
much more. I have about fifteen years of experience in
TEX and twenty-eight years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related

information on your project.

TUG
Institutional
Members

American Mathematical Society,
Providence, Rhode Island

Aware Software, Inc.,
Midland Park, New Jersey

Banca d’Italia,
Roma, Italy

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

Florida State University,

School of Computational Science
and Information Technology,
Tallahassee, Florida

subjects.

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software, Inc.,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS,
Copenhagen, Denmark

New York University,
Academic Computing Facility,
New York, New York

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

240

2011 TEX Users Group election

Jim Hefferon for the Elections Committee

The positions of TUG President and nine members
of the Board of Directors will be open as of the 2011
Annual Meeting, which will be held in November
2011 in Cairo, Egypt.

The directors whose terms will expire in 2011:
Barbara Beeton, Jon Breitenbucher, Kaja Christian-
sen, Susan DeMeritt, Ross Moore, Cheryl Ponchin,
and Philip Taylor. Two additional director positions
are currently unoccupied.

Continuing directors, with terms ending in 2013,
are: Jonathan Fine, Steve Grathwohl, Jim Hefferon,
Klaus Hoppner, Steve Peter, and David Walden.

The election to choose the new President and
Board members will be held in Spring of 2011. Nom-
inations for these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG Presi-
dent/to the Board by submitting a nomination pe-
tition in accordance with the TUG Election Proce-
dures. Election ... shall be by written mail ballot
of the entire membership, carried out in accordance
with those same Procedures.” The term of President
is two years.

The name of any member may be placed in
nomination for election to one of the open offices by
submission of a petition, signed by two other mem-
bers in good standing, to the TUG office at least
two weeks (14 days) prior to the mailing of ballots.
(A candidate’s membership dues for 2011 will be ex-
pected to be paid by the nomination deadline.) The
term of a member of the TUG Board is four years.

A nomination form follows this announcement;
forms may also be obtained from the TUG office, or
via http://tug.org/election.

Along with a nomination form, each candidate
must supply a passport-size photograph, a short bi-
ography, and a statement of intent to be included
with the ballot; the biography and statement of in-
tent together may not exceed 400 words. The dead-
line for receipt of nomination forms and ballot in-
formation at the TUG office is 1 February 2011.
Forms may be submitted by FAX, or scanned and
submitted by e-mail to office@tug.org.

Ballots will be mailed to all members within 30 days
after the close of nominations. Marked ballots must be
returned no more than six (6) weeks following the mail-
ing; the exact dates will be noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of
the election should be available by early June, and will
be announced in a future issue of TUGboat as well as
through various TEX-related electronic lists.

TUGDboat, Volume 31 (2010), No. 3

2011 TUG Election— Nomination Form

Only TUG members whose dues have been paid for 2011
will be eligible to participate in the election. The sig-
natures of two (2) members in good standing at the
time they sign the nomination form are required in ad-
dition to that of the nominee. Type or print names
clearly, using the name by which you are known to TUG.
Names that cannot be identified from the TUG member-
ship records will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):
0 TUG President
O Member of the TUG Board of Directors

for a term beginning with the 2011 Annual Meeting,
November 2011

1.

(please print)

(signature) (date)

(please print)

(signature) (date)

Return this nomination form to the TUG office (forms
submitted by FAX or scanned and submitted by e-mail
will be accepted). Nomination forms and all required
supplementary material (photograph, biography and per-
sonal statement for inclusion on the ballot) must be
received in the TUG office no later than 1 February
2011.) Tt is the responsibility of the candidate to en-
sure that this deadline is met. Under no circumstances
will incomplete applications be accepted.

0 nomination form
0 photograph
O biography/personal statement

TEX Users Group FAX: +1 206 203-3960
Nominations for 2011 Election

P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

1 Supplementary material may be sent separately from
the form, and supporting signatures need not all appear on
the same form.

TUGBoAT Volume 31, Number 3 2010

TUGBOAT Volume 31 (2010), No. 3

Introductory

158 Barbara Beeton / Editorial comments
* typography and TUGboat news

158 Karl Berry / From the President

 conferences; interviews; software
175 Jim Hefferon / Giving it away
« writing and distributing a free (libre) linear algebra text
191 Luca Merciadri / Some misunderstood or unknown IATEX2¢ tricks IT

« float references; spreadsheets; QED symbols; counting pages and tables; messages on blank pages;
dots in matrices; logic gates; circled-text enumerations

194 IXTEX Project Team / IATEX3 news, issue 4
¢ expl3 in practice; new xpackages; developments with expl3; TEX Users Group 2010 reflections

Intermediate
227 Karl Berry / The treasure chest
* new CTAN packages from April through October, 2010
161 Christophe Caignaert / A story of kpfonts: Reaching the limits of NFSS
* extensive article on an extensive font family
219 Jean-Michel Hufflen / Managing printed and online versions of large educational documents
¢ adapting texts to distance vs. presentational education
177 Peter Wilson / Glisterings
¢ meandering miniature books

195 Joseph Wright / From \newcommand to \DocumentNewCommand with xparse
» IATEX3 extensions to defining macros for users

Intermediate Plus

213 Matteo Centonza and Vito Piserchia / illumino: An XML document production system with a TEX core
e an Apache ant workflow for perfect INTEX to Docbook conversion

184 Paul Isambert / Three things you can do with LuaTEX that would be extremely painful otherwise
¢ LuaTgX introduction, and representing page color, underlining, margin notes

208 Oleg Parashchenko / Generate TEX documents using pdfscript
¢ Python library for conveniently generating correct TEX documents

Advanced

223 Michael Barnett / Aligning text in diagrams exported by Mathematica: A question about the
PostScript infrastructure
« help requested in finding proper baseline alignments in PDF output
197 Hans Hagen / Tagged PDF in ConTEXt
* towards tagged PDF support in ConTEXt
203 Luigi Scarso / Introduction to colours in ConTEXt MKIV
¢ theoretical, practical, and ConTEXt colors

Contents of publications from other TEX groups

230 ArsTgXnica: Issue 9 (October 2010); MAPS: Issue 40 (2010); The PracTgX Journal: Issue 2010-1;
Zpravodaj: Issues 20(1-2), 20(3) (2010); Die TEXnische Komddie: Issue 2010/3;

Reports and notices

160 Barbara Beeton / Hyphenation exception log
e update for missed and incorrect U.S. English hyphenations
237 Calendar
238 TEX consulting and production services
239 Institutional members
240 Jim Hefferon / TEX Users Group 2011 election

General Delivery

Fonts

Publishing

Software & Tools

IATEX
TATEX 3

ConTEXt

Electronic Documents

Problems

Hints & Tricks
Abstracts

News
Advertisements

TUG Business

158
158

160
161

175
177

184

191

194
195

197
203

208
213

219

223

227

229
230
231
233
236

237
238

239
240

TUGBOAT
Volume 31, Number 3 / 2010

From the president / Karl Berry

Editorial comments / Barbara Beeton
Matthew Carter named MacArthur Fellow;
Indie Excellence Awards for self-published books;
City maps made entirely of type; U&lc on line;
Some “under-the-covers” uses of TEX; Beyond literate programming

Hyphenation exception log / Barbara Beeton
A story of kpfonts: Reaching the limits of NFSS / Christophe Caignaert

Giving it away / Jim Hefferon
Glisterings: Meandering miniature books / Peter Wilson

Three things you can do with LuaTEX that would be extremely painful otherwise /
Paul Isambert

Some misunderstood or unknown IATEX 2¢ tricks II / Luca Merciadri

IATEX3 news, issue 3 / IATEX Project Team
From \newcommand to \DocumentNewCommand with xparse / Joseph Wright

Tagged PDF in ConTEXt / Hans Hagen
Introduction to colours in ConTEXt MKiV / Luigi Scarso

Generate TEX documents using pdfscript / Oleg Parashchenko

illumino: An XML document production system with a TEX core /
Matteo Centonza and Vito Piserchia

Managing printed and online versions of large educational documents /
Jean-Michel Hufflen

Aligning text in diagrams exported by Mathematica: A question about the
PostScript infrastructure / Michael Barnett

The treasure chest / Karl Berry

ArsTpXnica: Contents of issue 9 (October 2010)
MAPS: Contents of issue 40 (2010)

The PracTEX Journal: Contents of issue 2010-1
Zpravodag: Contents of issues 20(1-2), 20(3) (2010)
Die TgXnische Komddie: Contents of issue 2010/3

Calendar
TEX consulting and production services

TUG institutional members
TUG 2011 election

TUGBOAT Volume 31 (2010), No. 3

Introductory

158 Barbara Beeton / Editorial comments
* typography and TUGboat news

158 Karl Berry / From the President

¢ conferences; interviews; software
175 Jim Hefferon / Giving it away
« writing and distributing a free (libre) linear algebra text
191 Luca Merciadri / Some misunderstood or unknown IATEX2¢ tricks IT

« float references; spreadsheets; QED symbols; counting pages and tables; messages on blank pages;
dots in matrices; logic gates; circled-text enumerations

194 IXTEX Project Team / IATEX3 news, issue 4
e expl3 in practice; new xpackages; developments with expl3; TEX Users Group 2010 reflections

Intermediate
227 Karl Berry / The treasure chest
* new CTAN packages from April through October, 2010
161 Christophe Caignaert / A story of kpfonts: Reaching the limits of NFSS
* extensive article on an extensive font family
219 Jean-Michel Hufflen / Managing printed and online versions of large educational documents
¢ adapting texts to distance vs. presentational education
177 Peter Wilson / Glisterings
¢ meandering miniature books

195 Joseph Wright / From \newcommand to \DocumentNewCommand with xparse
» IATEX3 extensions to defining macros for users

Intermediate Plus

213 Matteo Centonza and Vito Piserchia / illumino: An XML document production system with a TEX core
e an Apache ant workflow for perfect INTEX to Docbook conversion

184 Paul Isambert / Three things you can do with LuaTEX that would be extremely painful otherwise
¢ LuaTgX introduction, and representing page color, underlining, margin notes

208 Oleg Parashchenko / Generate TEX documents using pdfscript
e Python library for conveniently generating correct TEX documents

Advanced

223 Michael Barnett / Aligning text in diagrams exported by Mathematica: A question about the
PostScript infrastructure
* help requested in finding proper baseline alignments in PDF output
197 Hans Hagen / Tagged PDF in ConTEXt
* towards tagged PDF support in ConTEXt
203 Luigi Scarso / Introduction to colours in ConTEXt MKIV
¢ theoretical, practical, and ConTEXt colors

Contents of publications from other TEX groups

230 ArsTgXnica: Issue 9 (October 2010); MAPS: Issue 40 (2010); The PracTgX Journal: Issue 2010-1;
Zpravodaj: Issues 20(1-2), 20(3) (2010); Die TEXnische Komddie: Issue 2010/3;

Reports and notices

160 Barbara Beeton / Hyphenation exception log
e update for missed and incorrect U.S. English hyphenations
237 Calendar
238 TEX consulting and production services
239 Institutional members
240 Jim Hefferon / TEX Users Group 2011 election

