
E72 MAPS 39 Hans Hagen

The language mix
Abstract
During the third ConTEXt conference that ran in parallel
to EuroTEX 2009 in The Hague we had several sessions
where mkiv was discussed and a few upcoming features
were demonstrated. The next sections summarize some of
that. It’s hard to predict the future, especially because new
possibilities show up once LuaTEX is opened up more, so
remarks about the future are not definitive.

TEX
From now on, if I refer to TEX in the perspective of
LuaTEX I mean “Good Old TEX”, the language as well
as the functionality. Although LuaTEX provides a couple
of extensions it remains pretty close to compatible to its
ancestor, certainly from the perspective of the end user.

As most ConTEXt users code their documents in the
TEX language, this will remain the focus of mkiv. After
all, there is no real reason to abandon it. However,
although ConTEXt already stimulates users to use struc-
ture where possible and not to use low level TEX com-
mands in the document source, we will add a few more
structural variants. For instance, we already introduced
\startchapter and \startitem in addition to \chapter
and \item.

We even go further, by using key/value pairs for
deVning section titles, bookmarks, running headers, ref-
erences, bookmarks and list entries at the start of a
chapter. And, as we carry around much more informa-
tion in the (for TEX so typical) auxiliary data Vles, we
provide extensive control over rendering the numbers of
these elements when they are recalled (like in tables of
contents). So, if you really want to use diUerent texts for
all references to a chapter header, it can be done:

\startchapter
[label=emcsquare,
title={About $e=mc^2$},
bookmark={einstein},
list={About $e=mc^2$ (Einstein)},
reference={$e=mc^2$}]

... content ...

\stopchapter

Under the hood, the mkiv code base is becoming quite
a mix and once we have a more clear picture of where
we’re heading, it might become even more of a hybrid.

Already for some time most of the font handling is
done by Lua, and a bit more logic and management
might move to Lua as well. However, as we want to
be downward compatible we cannot go as far as we
want (yet). This might change as soon as more of the
primitives have associated Lua functions. Even then it
will be a trade oU: calling Lua takes some time and it
might not pay oU at all.

Some of the more tricky components, like vertical
spacing, grid snapping, balancing columns, etc. are al-
ready in the process of being LuaVed and their hybrid
form might turn into complete Lua driven solutions
eventually. Again, the compatibility issue forces us to
follow a stepwise approach, but at the cost of (quite
some) extra development time. But whatever happens,
the TEX input language as well as machinery will be
there.

MetaPost
I never regret integrating MetaPost support in ConTEXt
and a dream came true when mplib became part of
LuaTEX. Apart from a few minor changes in the way
text integrates into MetaPost graphics the user interface
in mkiv is the same as in mkii. Insofar as Lua is involved,
this is hidden from the user. We use Lua for managing
runs and conversion of the result to pdf. Currently
generating MetaPost code by Lua is limited to assisting
in the typesetting of chemical structure formulas which
is now part of the core.

When deVning graphics we use the MetaPost lan-
guage and not some TEX-like variant of it. Information
can be passed to MetaPost using special macros (like
\MPcolor), but most relevant status information is passed
automatically anyway.

You should not be surprised if at some point we can
request information from TEX directly, because after all
this information is accessible. Think of something w :=
texdimen(0) ; being expanded at the MetaPost end in-
stead of w := \the\dimen0 ; being passed to MetaPost
from the TEX end.

Lua
What will the user see of Lua? First of all he or she can
use this scripting language to generate content. But when
making a format or by looking at the statistics printed at
the end of a run, it will be clear that Lua is used all over
the place.

The language mix EUROTEX 2009 E73

So how about Lua as a replacement for the TEX
input language? Actually, it is already possible to make
such “ConTEXt Lua Documents” using mkiv’s built in
functions. Each ConTEXt command is also available as
a Lua function.

\startluacode
context.bTABLE {

framecolor = "blue",
align= "middle",
style = "type",
offset=".5ex",

}
for i=1,10 do
context.bTR()
for i=1,20 do
local r= math.random(99)
if r < 50 then
context.bTD {
background = "color",
backgroundcolor = "blue"

}
context(context.white("%#2i",r))

else
context.bTD()
context("%#2i",r)

end
context.eTD()

end
context.eTR()

end
context.eTABLE()

\stopluacode

Of course it helps if you know ConTEXt a bit. For
instance we can as well say:

if r < 50 then
context.bTD {
background = "color",
backgroundcolor = "blue",
foregroundcolor = "white",

}
else
context.bTD()

end
context("%#2i",r)
context.eTD()

And, knowing Lua helps as well, since the following is
more eXcient:

\startluacode
local colored = {
background = "color",

backgroundcolor = "bluegreen",
foregroundcolor = "white",

}
local basespec = {
framecolor = "bluered",
align= "middle",
style = "type",
offset=".5ex",

}
local bTR, eTR = context.bTR, context.eTR
local bTD, eTD = context.bTD, context.eTD
context.bTABLE(basespec)
for i=1,10 do
bTR()
for i=1,20 do
local r= math.random(99)
bTD((r < 50 and colored) or nil)
context("%#2i",r)
eTD()

end
eTR()

end
context.eTABLE()

\stopluacode

Since in practice the speedup is negligible and the
memory footprint is about the same, such optimizations
seldom make sense.

At some point this interface will be extended, for
instance when we can use TEX’s main (scanning, parsing
and processing) loop as a so-called coroutine and when
we have opened up more of TEX’s internals. Of course,
instead of putting this in your TEX source, you can as
well keep the code at the Lua end.

84 40 78 80 91 20 34 77 28 55 48 63 37 51 95 91 63 72 15 61

2 25 14 80 16 40 13 11 99 22 51 84 61 30 64 52 49 97 29 77

53 77 40 89 29 35 80 91 7 94 53 9 20 66 89 35 7 2 46 7

24 97 90 85 27 54 38 76 51 67 53 4 44 93 93 72 29 74 64 36

69 17 44 88 83 33 23 89 35 68 95 59 66 86 44 92 40 81 68 91

48 22 95 92 15 88 64 43 62 28 78 31 45 23 19 28 56 42 17 90

11 13 50 76 98 93 68 38 75 37 30 23 58 25 16 73 13 79 17 74

8 95 6 52 18 24 79 73 65 96 64 76 10 14 52 8 7 21 46 82

57 75 6 16 99 21 89 13 99 6 87 8 1 92 59 18 17 39 91 82

36 55 58 45 69 10 53 75 31 99 58 87 75 63 4 75 83 92 87 83

Figure 1. The result of the displayed Lua code.

The script that manages a ConTEXt run (also called
context) will process Vles with that consist of such
commands directly if they have a cld suXx or when you
provide the Wag --forcecld.1

context yourfile.cld

E74 MAPS 39 Hans Hagen

But will this replace TEX as an input language? This is
quite unlikely because coding documents in TEX is so
convenient and there is not much to gain here. Of course
in a pure Lua based workWow (for instance publishing
information from databases) it would be nice to code in
Lua, but even then it’s mostly syntactic sugar, as TEX has
to do the job anyway. However, eventually we will have
a quite mature Lua counterpart.

XML
This is not so much a programming language but more
a method of tagging your document content (or data).
As structure is rather dominant in xml, it is quite handy
for situations where we need diUerent output formats
and multiple tools need to process the same data. It’s
also a standard, although this does not mean that all
documents you see are properly structured. This in
turn means that we need some manipulative power in
ConTEXt, and that happens to be easier to do in mkiv
than in mkii.

In ConTEXt we have been supporting xml for a long
time, and in mkivwemade the switch from stream based
to tree based processing. The current implementation is
mostly driven by what has been possible so far but as
LuaTEX becomes more mature, bits and pieces will be
reimplemented (or at least cleaned up and brought up to
date with developments in LuaTEX).

One could argue that it makes more sense to use xslt
for converting xml into something TEX, but in most
of the cases that I have to deal with much eUort goes
into mapping structure onto a given layout speciVcation.
Adding a bit of xml to TEX mapping to that directly is
quite convenient. The total amount of code is probably
smaller and it saves a processing step.

We’re mostly dealing with education-related docu-
ments and these tend to have a more complex structure
than the Vnal typeset result shows. Also, readability of
code is not served with such a split as most mappings
look messy anyway (or evolve that way) due to the way
the content is organized or elements get abused.

There is a dedicated manual for dealing with xml
in mkiv, so we only show a simple example here. The
documents to be processed are loaded in memory and
serialized using setups that are associated to elements.
We keep track of documents and nodes in a way that
permits multipass data handling (rather usual in TEX).
Say that we have a document that contains questions.
The following deVnitions will Wush the (root element)
questions:

\startxmlsetups xml:mysetups
\xmlsetsetup{#1}{questions}{xml:questions}

\stopxmlsetups

\xmlregistersetup{xml:mysetups}

\startxmlsetups xml:questions
\xmlflush{#1}

\stopxmlsetups

\xmlprocessfile{main}{somefile.xml}{}

Here the #1 represents the current xml element. Of
course we need more associations in order to get some-
thing meaningful. If we just serialize then we have
mappings like:

\xmlsetsetup{#1}{question|answer}{xml:*}

So, questions and answers are mapped onto their own
setup which Wushes them, probably with some number-
ing done at the spot.

In this mechanism Lua is sort of invisible but quite
busy as it is responsible for loading, Vltering, accessing
and serializing the tree. In this case TEX and Lua hand
over control in rapid succession.

You can hook in your own functions, like:

\xmlfilter{#1}
{(wording|feedback|choice)/function(cleanup)}

In this case the function cleanup is applied to elements
with names that match one of the three given.2

Of course, once you start mixing in Lua in this way,
you need to know how we deal with xml at the Lua end.
The following function show how we calculate scores:

\startluacode
function xml.functions.totalscore(root)
local n = 0
for e in xml.collected(root,"/outcome") do
if xml.filter(e,"action[text()=’add’]") then
local m = xml.filter

(e,"xml:///score/text()")
n = n + (tonumber(m or 0) or 0)

end
end
tex.write(n)

end
\stopluacode

You can either use such a function in a Vlter or just use
it as a TEX macro:

\startxmlsetups xml:question
\blank
\xmlfirst{#1}{wording}
\startitemize
\xmlfilter{#1}
{/answer/choice/command(xml:answer:choice)}

\stopitemize

The language mix EUROTEX 2009 E75

Figure 2. An example of using the font tester.

\endgraf
score: \xmlfunction{#1}{totalscore}
\blank

\stopxmlsetups

\startxmlsetups xml:answer:choice
\startitem

\xmlflush{#1}
\stopitem

\stopxmlsetups

The Vlter variant is like this:

\xmlfilter{#1}{./function(’totalscore’)}

So you can take your choice and make your source look
more xml-ish, Lua-like or TEX-wise. A careful reader
might have noticed the peculiar xml:// in the function
code. When used inside mkiv, the serializer defaults to
TEX so results are piped back into TEX. This preVx forced
the regular serializer which keeps the result at the Lua
end.

Currently some of the xml related modules, like
mathml and handling of tables, are really a mix of
TEX code and Lua calls, but it makes sense to move
them completely to Lua. One reason is that their input
(formulas and table content) is restricted to non-TEX

anyway. On the other hand, in order to be able to share
the implementation with TEX input, it also makes sense
to stick to some hybrid approach. In any case, more of
the calculations and logic will move to Lua, while TEX
will deal with the content.

A somewhat strange animal here is xsl-fo. We do
support it, but the mkii implementation was always
somewhat limited and the code was quite complex. So,
this needs a proper rewrite in mkiv, which will happen
indeed. It’s mostly a nice exercise of hybrid technology
but until now I never really needed it. Other bits and
pieces of the current xml goodies might also get an
upgrade.

There is already a bunch of functions and macros to
Vlter and manipulate xml content and currently the code
involved is being cleaned up. What direction we go also
depends on users’ demands. So, with respect to xml you
can expect more support, a better integration and an
upgrade of some supported xml related standards.

Tools
Some of the tools that ship with ConTEXt are also
examples of hybrid usage.

Take this:

mtxrun --script server --auto

E76 MAPS 39 Hans Hagen

Figure 3. An example of a help screen for a command.

On my machine this reports:

MTXrun | running at port: 31415
MTXrun | document root: c:/data/develop/context/

lua
MTXrun | main index file: unknown
MTXrun | scripts subpath: c:/data/develop/context

/lua
MTXrun | context services: http://localhost:31415

/mtx-server-ctx-startup.lua

The mtxrun script is a Lua script that acts as a controller
for other scripts, in this case mtx-server.lua that is part
of the regular distribution. As we use LuaTEX as a Lua
interpreter and since LuaTEX has a socket library built
in, it can act as a web server, limited but quite right for
our purpose.3

The web page that pops up when you enter the given
address lets you currently choose between the ConTEXt
help system and a font testing tool. In Vgure 2 you seen
an example of what the font testing tool does.

Here we have LuaTEX running a simple web server
but it’s not aware of having TEX on board. When you
click on one of the buttons at the bottom of the screen,
the server will load and execute a script related to the
request and in this case that script will create a TEX Vle
and call LuaTEX with ConTEXt to process that Vle. The

result is piped back to the browser.
You can use this tool to investigate fonts (their bad

and good habits) as well as to test the currently available
OpenType functionality in mkiv (bugs as well as good-
ies).

So again we have a hybrid usage although in this
case the user is not confronted with Lua and/or TEX
at all. The same is true for the other goodie, shown in
Vgure 3. Actually, such a goodie has always been part
of the ConTEXt distribution but it has been rewritten in
Lua.

The ConTEXt user interface is deVned in an xml Vle,
and this Vle is used for several purposes: initializing the
user interfaces at format generation time, typesetting the
formal command references (for all relevant interface
languages), for the wiki, and for the mentioned help
goodie.

Using the mix of languages permits us to provide con-
venient processing of documents that otherwise would
demand more from the user than it does now. For
instance, imagine that we want to process a series of doc-
uments in the so-called epub format. Such a document
is a zipped Vle that has a description and resources. As
the content of this archive is prescribed it’s quite easy to
process it:

context --ctx=x-epub.ctx yourfile.epub

The language mix EUROTEX 2009 E77

This is equivalent to:

texlua mtxrun.lua --script context --ctx=x-epub.
ctx yourfile.epub

So, here we have LuaTEX running a script that itself
(locates and) runs a script context. That script loads a
ConTEXt job description Vle (with suXx ctx). This Vle
tells what styles to load and might have additional direc-
tives but none of that has to bother the end user. In the
automatically loaded style we take care of reading the
xml Vles from the zipped Vle and eventually map the em-
bedded html like Vles onto style elements and produce
a pdf Vle. So, we have Lua managing a run and mkiv
managing with help of Lua reading from zip Vles and
converting xml into something that TEX is happy with.
As there is no standard with respect to the content itself,
i.e. the rendering is driven by whatever kind of structure
is used and whatever the css Vle is able to map it onto, in
practice we need an additional style for this class of doc-
uments. But anyway it’s a good example of integration.

The future
Apart from these language related issues, what more is
on the agenda? To mention a few integration related
thoughts:

@ At some point I want to explore the possibility to
limit processing to just one run, for instance by doing
trial runs without outputting anything but still col-

lecting multipass information. This might save some
runtime in demanding workWows especially when
we keep extensive font loading and image handling
in mind.

@ Related to this is the ability to run mkiv as a ser-
vice but that demands that we can reset the state of
LuaTEX and actually it might not be worth the trou-
ble at all given faster processors and disks. Also, it
might not save much runtime on larger jobs.

@ More interesting can be to continue experimenting
with isolating parts of ConTEXt in such a way that
one can construct a specialized subset of functional-
ity. Of course the main body of code will always be
loaded as one needs basic typesetting anyway.

Of course we keep improving existing mechanisms and
improve solutions using a mix of TEX and Lua, using
each language (and system) for what it can do best.

Notes
1. Similar methods exist for processing xml Vles.
2. This example is inspired by one of our projects where the
cleanup involves sanitizing (highly invalid) html data that is
embedded as a CDATA stream, a trick to prevent the xml Vle to
be invalid.
3. This application is not intentional but just a side eUect.

Hans Hagen
Pragma ADE, Hasselt
pragma (at) wxs dot nl

