
TUGboat, Volume 29 (2008), No. 2 317

MetaPost

Kanji-Sudokus: Integrating Chinese

and graphics

Denis Roegel

1 Introduction

Recently, I had the need to get my hands on Werner
Lemberg’s excellent CJK package, for a talk on the
Chinese calendar in which I wanted to use META-
POST figures with Chinese labels. This worked al-
most seamlessly.

Actually, this isn’t quite true, but CJK is better
and better integrated into TEX Live these days, and
writing in Chinese, Japanese or Korean has become
pretty much mundane with an up-to-date TEX envi-
ronment. This wasn’t so even a year ago. Nowadays,
you still need to install various Linux (say) packages,
and one is likely to run into trouble because some
crucial element is missing. For instance, on my lat-
est Ubuntu, the TEX Live setup wasn’t complete
and I was missing some Korean fonts I needed. By
the time you read this, the problem may have been
solved already.

To sum up, with the latest TEX Live 2007 setup,
and perhaps a few additional Linux packages, as
well as the latest Emacs, you are all set for type-
setting beautiful CJK documents! Typesetting CJK

has even become easier, because one can now write
almost everything in UTF-8, without a need to post-
process the input file with Emacs macros (this pro-
cedure used to output a .cjk file which could only
then be processed by LATEX). Now, the file you write
is the file you process, and processing has become
faster.

For METAPOST figures, the matter was also
made easier. Up until recently, when including Chi-
nese in METAPOST, one had first to produce a .cjk

file, which could unfortunately not be processed by
METAPOST. The .cjk file had to be slightly altered
first, because the Emacs macros were not aware of
the METAPOST format. This could have been cor-
rected within the Emacs macros, but in fact, since
the conversion to the .cjk file is now mostly an old
story, the processing problems have also vanished.
So, my advice is not only to switch to the latest TEX
Live and Linux, but also to write CJK in UTF-8. It
works!

2 A small example

I will illustrate the integration of Chinese and META-
POST with a small example. I will draw a Sudoku

grid, not with Hindu-Arabic numerals, but with Chi-
nese numerals. These numerals are 一 (1), 二 (2),

三 (3), 四 (4), 五 (5), 六 (6), 七 (7), 八 (8), and

九 (9).
A typical Sudoku problem reads as follows (this

example from Wikipedia):

8 7 9

4 1 9 5

6 2 8

7 2 6

4 8 3 1

8 6 3

9 8 6

6 1 9 5

5 3 7

2.1 The grid

The whole Sudoku problem can be drawn as follows
in METAPOST:

beginfig(1);

string sol[];

drawgrid(1.5pt,.5pt);

% first row at the bottom

% last row at the top

sol1="000080079";sol2="000419005";

sol3="060000280";sol4="700020006";

sol5="400803001";sol6="800060003";

sol7="098000060";sol8="600195000";

sol9="530070000";

fillgrid(sol)(false);

endfig;

The drawgrid macro is straightforward; it pro-
duces the horizontal and vertical lines (with u being
for instance equal to 1 cm):

def drawgrid(expr tha,thb)=

pickup pencircle scaled thb;

for i=0 upto 9:

draw (i*u,0)--(i*u,9u);

draw (0,i*u)--(9u,i*u);

endfor;

pickup pencircle scaled tha;

for i=0 upto 3:

draw (3i*u,0)--(3i*u,9u);

draw (0,3i*u)--(9u,3i*u);

endfor;

enddef;



318 TUGboat, Volume 29 (2008), No. 2

2.2 Filling the grid

In order to fill the grid, we need to access the posi-
tion (i, j), where i is the column and j is the row, all
numbered from 1 at the bottom-left cell. We there-
fore define the following macro, which takes i, j and
a label that it centers in the middle of the cell. In
our case, the label is scaled 200%, but how much
you scale depends on the dimensions of the frame
and on the base size of the font.

def pos(expr i,j,l)=

label(l scaled 2,((i-.5)*u,(j-.5)*u));

enddef;

2.3 Cell entries

In order to put, say, the value 3 at position (2,9), we
could write

pos(2,9,btex 3 etex);

However, we want to be more general and draw
our figures from the string array sol. That way,
some program can produce a problem and/or a so-
lution, and the problem can easily be plugged into
our macros. So, instead, we could write

pos(2,9,TEX(s));

where s is a string provided to the TEX macro. The
latter is defined by loading the package TEX:

input TEX;

This, however, is not very efficient, because it
will call TEX up to 81 times. And besides, it won’t
take care of Chinese numerals when we need them.
So, we are looking for something more flexible. The
latexmp METAPOST package will suit our needs.
The previous label is now obtained with

pos(2,9,textext(s));

One of the advantages of the latexmp package
is that it will require only two runs of LATEX, and not
one for every label. This package also makes it easy
to load LATEX packages, in particular for Chinese.
So, our METAPOST file will begin as follows:

input latexmp;

setupLaTeXMP(class="article",

packages="CJKutf8",

preamble=(

"\let\N\newcommand"

&"\N\0{}\N\1{一}\N\2{二}\N\3{三}"

&"\N\4{四}\N\5{五}\N\6{六}\N\7{七}"

&"\N\8{八}\N\9{九}"

&"\AtBeginDocument{"

& "\begin{CJK}{UTF8}{bsmi}}"

&"\AtEndDocument{\end{CJK}}"));

This preamble will load the CJKutf8 package,
which is what we need for UTF-8 input. It then
defines the commands \0 (for void), \1 (Chinese nu-
meral 1), \2 (Chinese numeral 2), etc., up to \9.

Then, we start an appropriate (for these char-
acters) CJK environment at the \begin{document}

hook:

\AtBeginDocument{

\begin{CJK}{UTF8}{bsmi}}

and we close the environment at the end of the doc-
ument:

\AtEndDocument{\end{CJK}}

2.4 Putting all the pieces together

We now have a definition of cell values, we can draw
a grid, and we have macros for Chinese numerals.
What’s next? Well, we want to be able to do two
kinds of things: draw problems, and draw solutions.
For our purposes, a problem is merely an array of
cell values with some cells being equal to 0. These
0s will be displayed as empty cells. In addition to
this switch, we want to display the non-void values
either with Hindu-Arabic numerals or with Chinese
numerals.

Our coding of cell values makes this rather easy,
because we will use (for instance) 4 for the Hindu-
Arabic numeral, and \4 for the Chinese numeral. So,
care must be taken of this additional \ when needed.
The special case of 0 must also be considered, be-
cause the Hindu-Arabic numeral 0 must not be dis-
played, whereas the Chinese \0 can be displayed,
since it is void.

The ‘0’ switch is handled with the zerospace

macro. This macro takes a character s and replaces
this character by a space only when it is 0 and when
the output uses Hindu-Arabic numerals.

def zerospace(expr chinese,s)=

if not chinese and (s="0"): " "

else: s fi

enddef;

Finally, filling the grid is done with fillgrid.
The first parameter is the name of the string array
and the second parameter is a switch for Chinese
or Hindu-Arabic numerals. substring is used to
isolate the character of interest.

def fillgrid(text grid)(expr chinese)=

for i=1 upto 9:for j=1 upto 9:

pos(j,i,textext(if chinese: "\" & fi

zerospace(chinese,

substring(j-1,j) of grid[i])));

endfor;endfor;

enddef;



TUGboat, Volume 29 (2008), No. 2 319

The result is then as follows for the problem
and the solution, with Chinese numerals:

八 七 九

四 一 九 五

六 二 八

七 二 六

四 八 三 一

八 六 三

九 八 六

六 一 九 五

五 三 七

三 四 五 二 八 六 一 七 九

二 八 七 四 一 九 六 三 五

九 六 一 五 三 七 二 八 四

七 一 三 九 二 四 八 五 六

四 二 六 八 五 三 七 九 一

八 五 九 七 六 一 四 二 三

一 九 八 三 四 二 五 六 七

六 七 二 一 九 五 三 四 八

五 三 四 六 七 八 九 一 二

3 Conclusion

This example demonstrates how straightforward the
integration of Chinese and METAPOST has become.
What remains to be done is to link these macros with
a general problem solving algorithm for Sudokus.

⋄ Denis Roegel

LORIA, BP 239

54506 Vandœuvre-lès-Nancy

FRANCE

roegel (at) loria dot fr

http://www.loria.fr/~roegel


