
12 TUGboat, Volume 28 (2007), No. 1

Hints & Tricks

Glisterings

Peter Wilson

’Tis better to be lowly born
And range with humble livers in content
Than to be perked up in a glist’ring grief
And wear a golden sorrow.

Henry VIII, William Shakespeare

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

To no one but the Son of Heaven does
it belong to order ceremonies, to fix the
measures, and to determine the written
characters.

The Analects, Confucius

1 Stringing along

In an earlier column [3] I mentioned that I might
continue looking at character strings. Here is some
basic code that can be used for examining each char-
acter in a simple string:
\catcode‘\^^G=12

\newcommand*{\allchars}[1]{%

\def\stuff{#1}\ifx\stuff\@empty\else

\@llchars#1^^G\fi}

\def\@llchars#1#2^^G{%

\def\letter{#1}\def\others{#2}%

\ifx\letter\@empty\let\next\@gobble

\else

\doachar{#1}%

\ifx\others\@empty \let\next\@gobble

\else \let\next\@llchars \fi

\fi

\next#2^^G}

\catcode‘\^^G=15

Here I have used the special character ^^G as a
marker for the end of the string. This is normally
an invalid character but I temporarily changed its
catcode to make it an ‘other’ character (like @ nor-
mally is). The \@gobble macro is part of the LATEX
kernel; it takes one argument and does nothing with
it. Buried inside the code \allchars calls a macro
\doachar{〈char〉} for each character in the string.
With this definition
\newcommand*{\doachar}[1]{\textit{#1}}

some examples of \allchars are:
\allchars{allchars} -> al lchars
\allchars{{\oe}rstead’s} -> œrstead’ s
\allchars{} ->
\allchars{with spaces} -> withspaces
The special case of an empty argument is handled
in the \allchars macro itself, while everything else
is dealt with by \@llchars. This keeps calling it-
self, grabbing one character from the initial string
each time until all are used up, via a process called
tail recursion, meaning that the last thing that it
does is call itself (or effectively do nothing if all the
characters have been processed).

Remember that with LATEX, if you put any code
that includes macros with @ in their names it either
has to go in a package file (a .sty file) or be sur-
rounded by the \makeatletter and \makeatother
pair of commands.

One unfortunate property of \allchars is that
it discards all spaces in the original string. Spaces
can be handled by a two-part process. The first
part goes through the string word by word, where a
word is a set of characters followed by a space. The
second part then goes through each word character
by character.

First some preliminaries and the main user com-
mand \Upeach.
\newif\if@newword

\def\checkrelax{\relax}

\catcode‘\^^G=12

\newcommand*{\Upeach}[1]{%

\@upeach#1^^G}

\def\@upeach#1^^G{%

\def\stuff{#1 }%

\expandafter\getaword\stuff ^^G}

The \getaword macro extracts the next word
from the string (note the argument delimited by a
space). It then calls \getachar with the word as its
argument.
\long\def\getaword#1 {%

\@newwordtrue

\expandafter\getachar#1\relax}

\getachar gets the next ‘letter’ in the word. If
it is ^^G then the string is finished. If the letter is
the same as \relax then it is a space and the macro
must call \getaword to repeat the cycle. Otherwise
it has a letter, calls \doUpeach to do something with
it, and calls itself again to get the following letter.
\def\getachar#1{%

\def\letter{#1}%

\if\letter^^G\let\next\relax

\else

\ifx\letter\checkrelax

\let\next\getaword

TUGboat, Volume 28 (2007), No. 1 13

\else

\doUpeach{#1}%

\let\next\getachar

\fi

\fi

\next}

\catcode‘\^^G=15

\getachar is another example of tail recursion.
The macro \doUpeach checks if a new word has

just started. If so, it converts its argument into italic
uppercase and sets \@newwordfalse. If its argu-
ment is not the first letter in a word it typesets it in
a bold font. Of course this is not a realistic thing to
do — it’s merely to demonstrate that all the charac-
ters in the string have been examined.
\newcommand*{\doUpeach}[1]{%

\if@newword

\space\textit{\MakeUppercase{#1}}%

\@newwordfalse

\else \textbf{#1}\fi}

Here are a couple of examples:
\Upeach{string with spaces} ->

String W ith Spaces
\Upeach{{\oe}rstead’s rule} ->

Œrstead’s Rule

These macros work for simple strings but are
likely to fail if there are accents or anything else to
disturb the even tenor of simple characters. The
earlier column [3] gave an indication of how such
problems might be resolved. On the other hand,
it could be a lot simpler and quicker to change the
strings by hand using your normal text editor.

Here we go loop de loop.
Here we go loop de li.
Here we go loop de loop
On a Saturday night.

Loop de loop, Johnny Thunder?

2 Loops

There are occasions when you need to perform a
repetitive action that does not involve string pro-
cessing. TEX provides a \loop ... \repeat which
can be useful in some circumstances. The general
scheme is like this:
\loop

<lots of useful commands>

\if<some condition>

<more code>

\repeat

TEX processes the commands following the \loop
and then performs the \if test (without any closing
\fi). If the test is true TEX will then process the

<more code> and start again with the first batch
of commands. If the condition is false it will do
whatever comes after the \repeat.

LATEX, among other internal facilities, provides
a mechanism for going through a list of things that
are separated by commas (like the option list for a
class or package). This scheme looks like:
\@for\scratch:=<list>\do{%

<something with \scratch>}

where \scratch is some command name and <list>
is a comma-separated list. It takes each element of
the list in turn, defines \scratch as that element
and then does whatever you tell it to do with it.
This continues until the list is exhausted.

It is easier to see how these work with a real ex-
ample. The following is a very stripped down version
of some code from the memoir class [2]. It provides a
means of putting a list of things into a tabular form
without having to worry about signifying the end of
each row. The command is:
\fillrows{〈width〉}{〈numcols〉}{〈comma separated
list〉}
which will create a centered tabular form of over-
all width 〈width〉 and 〈numcols〉 columns, with the
elements from 〈comma separated list〉 filling up the
tabular row by row (i.e., left to right, top to bottom).
I got the initial idea from TEX for the Impatient [1]
which gave a TEX version, filling top to bottom and
left to right.

First some counters and lengths, etc., that we
need. Be warned, much of the code below you won’t
want to know about and I’m not going to try and
explain it. In LATEX this is the kind of stuff that is
hidden within the tabular environment.
\newcount\CT@cols % number of cols

\newcount\@cellstogo % columns left

\newdimen\CT@col@width % column width

\newtoks\crtok

\crtok = {\cr}%

Now we can start on \fillrows itself, which
takes three arguments — the overall width, the num-
ber of columns, and the list of entries. The first part
sets up counters based on the number of columns.
\newcommand{\fillrows}[3]{\par\begingroup

\CT@cols=#2\relax

\@cellstogo=\CT@cols

The next bit defines code that will be called after
each entry is put into the tabular; it will insert either
a & or the internal form of \\.
\def\@endcolactions{%

\global\advance\@cellstogo\m@ne

\ifnum\@cellstogo<\@ne

\global\@cellstogo=\CT@cols

\the\crtok

14 TUGboat, Volume 28 (2007), No. 1

\else

&

\fi}%

Calculate the column widths and start off the tab-
ular by defining the preamble (the general layout of
the tabular).

\CT@col@width=#1

\divide\CT@col@width \CT@cols

\penalty 10000\relax

\noindent

\vskip -\z@

\def\@preamble{}%

\begingroup

\let\@sharp\relax

Now comes a \loop...\repeat going over all but
one of the columns, and for each column extending
the \@preamble by adding some spacing and a &.

\ifnum\CT@cols>\@ne

\loop

\g@addto@macro{\@preamble}{%

\hb@xt@ \CT@col@width

{\strut\relax\@sharp\hfil} &}%

\advance\CT@cols\m@ne

\ifnum\CT@cols>\@ne

\repeat

\fi

The & is not required for the last column.
\g@addto@macro{\@preamble}{%

\hb@xt@ \CT@col@width

{\strut\relax\@sharp\hfil}}%

\endgroup

(The above code sets each column to a fixed width
(\CT@col@width). Commenting out the two lines
that start with \hb@xt@ will result in each column
being set to its natural width, just wide enough for
the widest entry in the column.) Now finish up the
preliminaries.

\let\@sharp ##

\tabskip\fill

\halign to\hsize \bgroup

\tabskip\z@

\@preamble

\tabskip\fill\cr

The entries are added to the tabular, using a \@for
loop to extract each entry from the comma-sepa-
rated list.

\@for\@tempa:=#3\do{%

\@tempa\unskip\space\@endcolactions}%

All the entries have been dealt with, so wrap every-
thing up.

\the\crtok \egroup \endgroup \par}

As a simple example, the code below creates the
following tabular:
\fillrows{0.7\textwidth}{3}{ one, two,

three, four, five, six, seven}
one two three
four five six
seven

And here is the result of another \fillrows,
this time with five columns set to their natural width.

That’s all folks! Until we
meet again . . .

References

[1] Paul W. Abrahams, Karl Berry, and Kathryn A.
Hargreaves. TEX for the Impatient. Addison-
Wesley, 1990. (Available on CTAN in info/
impatient).

[2] Peter Wilson. The memoir class for config-
urable typesetting, 2004. (Available on CTAN

in latex/macros/contrib/memoir).
[3] Peter Wilson. Glisterings. TUGboat, 26(3):253–

255, 2005.

� Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)

earthlink dot net

