
The TEX Wrapper Structure:
a basic TEX document model

implemented in iTEXMac
Jérôme Laurens

Université de Bourgogne

February 25, 2005

1 Introduction
This presentation primarily concerns the high level user interface of the TEX typesetting system. In general,
people find it difficult to work with TEX due to the powerful syntax, numerous auxiliary files created or managed,
and the user interface that has very little in common with standard word processors. Moreover, sharing TEX
documents with colleagues is often delicate as soon as some non standard LATEX is involved or, more frequently,
there are some significant differences in the computer configurations. The purpose of this article is to lay the
foundation for the TEX Wrapper Structure, which aims to help the user solve this kind of problems.

We first explain what could be the desiderata for a TEX document object model, then we give a precise
description of the TEX Wrapper Structure, discussing the various solutions and the final choice. Finally, the
concrete implementation used by iTEXMac1 demonstrates an example of user interface.

An appendix briefly presents the latest developments concerning PDF synchronization which is a MacOS X
specific feature of great interest for the whole TEX community.

2 A TEX Document Model
2.1 De facto document model
A document model aims to describe the storage and use of a certain kind of data: a simple document model
might be a linear text, which is an ordered list of 8 bit numbers following the ASCII rules and stored in one flat
file. More complex document structures are used either to describe data contents, for example Adobe’s Portable
Document Format, or to store them, for example old MacOS operating sytemes use a hierearchical file system
with resource forks to allow file to store structured data. Regarding these two points among others, TEX is
very specific mainly because it does not pose a priori any document model, letting the end user use its own de
facto model. The question is to identify what core structure should have a TEX document model, that should
be shared by quite all documents including the ones already existing.

Actually, a self contained TEX document is a series of files gathering data as various as images, linear text,
formatted text, macro packages (LATEX style), code libraries (libjpeg...), engines (TEX, MetaPost) and their
calling options. Of course this makes really huge documents, such that common parts are naturally eliminated,
hoping that they will be available everywhere and every time one will ever need them. This results in some kind
of weak TEX document model which has proved to be efficient, except in some rare situations where the syntax
was broken by some package update, and less rare ones where engine options have been forgotten... Far-sighted
TEX users carefully keep the various log files coming from typesetting because of the versioning information they
contain. It is extremely helpful when fixing update problems, but still relies on non negligible human expertise
where one could reasonably expect full computer assistance. When a strategy is available to record version
information, it will be added to the TEX Wrapper Structure.

Generally speaking, a TEX document is composed of different kind of graphical objects, from linear text to
pictures, possibly splitted into different files. There is no real problem concerning the various graphical data

1iTEXMac, one of the open source TEX front-ends on MacOS X, was presented during EuroTEX 2003 and TUG2004. Further
information at http://itexmac.sourceforge.net

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

193



formats but the same does not hold for TEX source files. Any TEX user knows that a source document is not
correct as long as it has not successfully passed TEX digestive process. More experienced users are perfectly
aware of the problems that can appear when using certain combinations of macro packages. All this makes the
data part of a TEX Document Model very difficult to define a priori in a complete and explicit description. This
design, being as open as possible, is a real advantage because it provides quite unlimited document types. But
at the same time, it does not take into account the document preparation stage and does not provide any help
to the user in his real life struggle for document elaboration.

2.2 The meta information
For that purpose, advanced TEX dedicated editors have designed their proper strategy to assist the user with
extraneous information not really necessary but missing when absent: the meta information. For example syntax
attributes highlighting (marking TEX tokens, comments and other stuff with special colors) is a clever use of
the information actually available as is in a source file. This can be improved by some syntax checking, that
could mark bad commands just like the spell checker marks the misspelled words. For this to work efficiently
in a real time context, we must collect the macros defined in the context and cache the whole dictionary list
to improve access. Similarly, parsing the document contents for sectioning commands provides the user with a
map that improves the overall sight and the navigation inside the document. All this is more or less filtering
or interpreting the existing information to make it more accessible. Moreover, editors are free to add their own
information if they think it is relevant. We can see that in fact, real TEX users may need more information that
actually available in a TEX document, and TEX does not care about this kind of meta information. The TEX
Wrapper Structure will mainly consider this point.

2.3 The document storage
As we must preserve actual TEX documents in a backward compatibility issue, we are only concerned with
the document storage, more precisely the location where the different files are stored. Some of them must be
located in definite folders, according to the TEX environment (in general following the TEX Directory Structure
rules), while the user is absolutely free to name others. For them, some weak naming rules could help in their
organization, without limiting their use. For example, people generally gather their graphic files in folders
named images, graphics, pictures or whatsoever but there is not yet a widely spread strategy to become part of
a TEX document model. Moreover, we must admit the use of different naming strategies to best fit the numerous
situations one can imagine, for example, a unique image directory is certainly not advisable when the document
is expected to contain thousands of logically organized images. Finally, the only naming rules we can safely
state concerns the meta information and will be addressed by the TEX Wrapper Structure.

3 The TEX Wrapper Structure
We define the core TEX Wrapper Structure gathering information useful to any editor or utility, then we detail
the TEX project concept and we briefly describe the concrete implementation developed in iTEXMac. This is a
weak TEX document model given through a series of compliance rules, only assuming an underlying hierarchical
file system. We also assume that all the document files but the standard macro packages are collected in one
enclosing directory, but a priori different documents can share the same directory.

3.1 The core TEX Wrapper Structure
The only purpose of the core structure is to separate the document data, which is necessary, from the meta
information, which is supplemental. Actually, the meta information is stored either in the very TEX source file
(for example the %& first line trick to code for the format, the first commented line for TEXexec, emacs local
variables to code for the string encoding, AucTEX local variables in the file trailer), or an external file (the .aux
LATEX file, the Auto/ directory where AucTEX caches its style attributes, the TEXniCenter projects) and each
tool defines its own strategy without really taking care of one another. It is not yet the point to define a unique
and complete set of meta information, but we are concerned with the storage location of the meta information.
For practical reasons, it appears that some information such like the string encoding and the language should
live near the document they are referring to, but other information including the list of project files and the
root document identifier should live in a shared data base. If we consider all the tools of the TEX typesetting

WET05 Proceedings EuroTEX2005 – Pont-à-Mousson, France

194 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens



system, the simplest solution from the user point of view, is to collect the whole meta information into one
central dedicated location. That way, no more meaningful comment will pollute the TEX source thus preserving
the meta information from hazardous manipulations and preventing an innocuous TEX comment to become
suddenly active while a utility has silently put some implicit information in it.

Finally, I strongly recommend not to use TEX comments anymore for anything else that commenting, except
when conforming to a publicly available and widely accepted syntax rule.

3.2 The TEX project paradigm
With emacs’ AucTEX mode and TEXniCenter we already mentioned, the old DirectTEX pro is another example
of editor that stores meta information in an external file. We propose to collect this information in one dedicated
directory. So, a TEX project is just a directory named document.texp (“texp" stands for TEX Project) where
shared or private meta information should be stored. The possible interference with already existing TEX
documents is quite void because the texp extension is not yet used, this ensures a full backward compatibility.

To define the mapping linking projects to files, the TEX project is expected to maintain a list, either explicit
or implicit, of all the files it is meant to manage. But conversely, it is not strictly necessary for the TEX source
files to know the project they belong to (as for AucTEX) because this information can be retrieved easily if we
impose that TEX projects only manage files at the same level of below themselves in the file system hierarchy.
Then, given a file path, we just have to scan the file hierarchy up to the root for TEX projects and only keep
the appropriate ones.

The contents of the TEX project directory document.texp is described in the sequel. The user is not expected
to view nor edit this data, so the format primarily concerns the programmers. More precisely, it is a balance
between a flat XML file and an atomic directory structure, both suitable for information hierarchically organized.
The “/" character is used as path separator.

Key Class Contents
isa String Required with value: info
version Number Not yet used but reserved
files Dictionary The paths of the files involved in the

project wrapped in a files dictionary de-
scribed in table 2. It is an indirection table
suitable for file name management. Op-
tional.

properties Dictionary Attributes of the above files wrapped in a
properties dictionary described in table
3, this is were string encoding and spelling
key are recorded. Optional.

main String The fileKey of the main file, if relevant,
where fileKey is one of the keys of the
files dictionary. The main file is the one
to be typeset or processed. Optional.

Table 1: info dictionary description where the TEX project maintains the list of known files, their properties
and the main file identifier.

• document.texp/Info.plist is an XML property list for a general purpose meta information wrapped in
an info dictionary described in table 1 and subsequent tables. This is optional.
We make use of the XML property list data format storage as publicly available at

http://www.apple.com/DTDs/PropertyList-1.0.dtd

It is indeed MacOS X centric but two PERL modules are available on CPAN to parse such XML files: Mac-
PropertyList2 andMac-PropertyListFilter3. Moreover, this can be changed in forthcoming versions without
causing any harm from the user point of view.

2http://search.cpan.org/~bdfoy/Mac-PropertyList-0.9/
3http://search.cpan.org/~jgoff/Mac-PropertyListFilter-0.02/

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

195



Key Class Contents
fileKey String The path of the file identified by the string

fileKey, relative to the directory containing
the TEX project. Each file key is unique.
While the file name is subject to changes,
the file key will never change: the latter is a
strongly reliable file identifier. In general,
no two different keys should correspond to
the same path.

Table 2: files dictionary description: an indirection table particularly suitable for file name management.

Key Class Contents
fileKey Dictionary Language, encoding, spelling informa-

tion and other attributes wrapped in an
attributes dictionary described in table
4. fileKey is one of the keys of the files
dictionary.

Table 3: properties dictionary description: to each key identifying a file is associated a dictionary of attributes.

Key Class Contents
isa String Required with value: attributes
version Number Not yet used but reserved
language String According to latest ISO 639. Optional.
codeset String According to ISO 3166 and the IANA As-

signed Character Set Names. If absent
the standard C++ locale library module
is used to retrieve the codeset from the
language. Optional.

eol String When non void and consistent, the string
used as end of line marker. Optional.

spelling String One of the spellingKeys meaning
that the property list at document.
texp/spellingKeys.spelling contains the
list of known words of the present file
wrapped in a spelling dictionary described
in table 5. Optional.

Table 4: attributes dictionary description

Key Class Contents
isa String Required with value: spelling
version Number Not yet used but reserved
words Array The array of known words

Table 5: spelling dictionary description for the list of known words.

• document.texp/frontends A directory dedicated to front-ends where they store private meta information.

• document.texp/frontends/name A private file or directory dedicated to the front-end identified by name.
The further contents definition is left under the front-end responsibility. The directory at

document.texp/frontends/iTeXMac

WET05 Proceedings EuroTEX2005 – Pont-à-Mousson, France

196 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens



is reserved for iTEXMac private use, maybe AucTEX can move its Auto/ directory into

document.texp/frontends/AucTeX

and TEXniCenter can use

document.texp/frontends/TeXniCenter.

This cooperative design is based on a strong separation of private meta informations from each other
front-end, it prevents corruption and allows better recovery in case of error. Moreover, synchronization
problems that may appear when two different utilities access the same flat file do not occur.

• document.texp/users is a directory dedicated to users and should not contain any front-end specific data.
This is optional and reserved for further user.

• document.texp/users/name is a directory dedicated to the user identified by name (not its login name).
Not yet defined, but private and preferably crypted.

• document.texp/spellingKey.spelling is an XML property list for lists of known words wrapped in a
spelling dictionary defined in table 5 and uniquely identified by spellingKey. This format is stronger
than a simple comma separated list of words. This is optional.
We assume that a text document is multilingual and can have different spelling contexts, all of them being
defined by a language with a dictionary and a list of known words. At this time, MacOS X programming
interface does not allow to have more than one spelling context per open file, and the same might hold for
other operating systems. So, each file is expected to have only one spelling context defined by a language
and a spelling key, both defined in the properties dictionary (see the description in table 3). Then, a
multilingual document will be splitted into files according to the language and the list of known words.
Notice that there is no pre definite correlation between a language and a list of known words. And this
design is certainly not the best we can elaborate, but it appears to be sufficiently efficient.

3.3 The TEX Wrapper Structure implemented in iTEXMac
The graphical user interface developed in iTEXMac takes benefit of the TEX Wrapper Structure. Private in-
formations are cached to improve the user experience: window size and positions recording are the classical
examples. Also, meta information about the engine and options used to typeset the document are stored, they
are used to launch the appropriate utility with appropriate arguments assuming a teTEX like distribution is
available. This should be shared once the latest TEX live is well established.

Technically, iTEXMac uses a set of private, built-in shell scripts to typeset documents. If this is not suitable,
customized ones are used instead, possibly on a per document basis, but no warning is given then. No security
problem has been reported yet, most certainly because such documents are not shared.

Notice that iTEXMac declares both texp and texd as document wrapper extensions to MacOS X, which
means that document.texp and document.texd folders are seen by other applications just like other single file
documents, their contents being hidden at first glance. Using another file extension for the TEX document will
prevent this MacOS X feature without losing the benefit of the TEX Wrapper Structure and its TEX project.

4 Appendix: The pdfsync Feature
During the document preparation using the TEX typesetting system, the correspondence between the output
and the original description code in the input is of frequent use, unfortunately it is not straightforward. Some
commercial TEX frontends (Visual TEX4 and TEXtures5) introduced a workaround. Then LATEX users could
access the same features with a less-efficient implementation through the use of srcltx.sty, which added
source specials in the DVI file. The command line option -src-specials now delegates that task to the TEX
typesetting engine.

iTEXMac fully supports this synchronization allowing to jump from the DVI file to the .tex source and
back. Moreover, Piero d’Ancona and the author have extended this feature from the .tex to the .pdf output.

4http://www.micropress-inc.com/
5http://www.bluesky.com/

Proceedings EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

197



While typesetting a document.tex file with LATEX for example, the pdfsync package writes extra geometry
information in an auxiliary file named document.pdfsync, subsequently used by the front ends to link line
numbers in source documents with locations in pages of output PDF documents. iTEXMac, TEXShop6 and
TEXniscope7 both support pdfsync.

The official pdfsync web site where file specifications and more complete explanations will be found at:

http://iTeXMac.sourceforge.net/pdfsync.html

Unfortunately, the various pdfsync files for Plain, LATEX or ConTEXt are not completely safe. Some compatibility
problems with existing macro packages may occur. Moreover, sometimes pdfsync actually influences the final
layout; in a case like that, it should only be used in the document preparation stage.

Notice that the pdfsync approach is different from Heiko Oberdiek’s vpe.sty.

6http://www.uoregon.edu/~koch/texshop
7http://docenti.ing.unipi.it/~d9615/homepage/mac.html

WET05 Proceedings EuroTEX2005 – Pont-à-Mousson, France

198 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens


