
Migrating to XML: The Case of the GUST Bulletin Archive

W lodzimierz Bzyl
Instytut Matematyki, Uniwersytet Gdański
80-952 Gdańsk
ul. Wita Stwosza 57
Poland
matwb@univ.gda.pl

Tomasz Przechlewski
Wydzia l Zarzadzania, Uniwersytet Gdański
81-824 Sopot
ul. Armii Krajowej 119/121
Poland
tomasz@gnu.univ.gda.pl

Abstract

Ten years of experience with TEX publishing of the GUST bulletin shows that
Knuth’s dream of highly portable TEX files is apparently an illusion in practice.
Over the last decade, articles in the GUST bulletin have used at least six major
formats (LATEX 2.09, transitional LATEX+NFSS, LATEX 2ε, plain-based TUGboat,
Eplain, and ConTEXt), numerous macro packages, fonts, and graphic formats.
Many old articles are typeset differently nowadays, and some even cause TEX
errors.

This situation motivates the following question: how do we avoid the same
problem in the future? As the World Wide Web is quickly becoming the main-
stream both of publishing and of information exchange we argue for migration to
XML—a Web compatible data format.

In the paper we examine a possible strategy for storing GUST articles in a
custom XML format and publishing them with both TEX and XSLT/FO. Finally,
the problems of converting the TEX files to XML and possibility of using TEX4ht—
an authoring system for producing hypertext—are discussed.

1 Introduction

The dominant role played by the Web in information
exchange in modern times has motivated publishers
to make printed documents widely available on the
Internet. It is now common that many publications
are available on the Web only, or before they are
printed on paper. Articles published in the GUST

bulletin are available on the Web in PostScript and
PDF. Unfortunately, these formats decrease doc-
ument accessibility, searching and indexing by Web
search engines. For broad accessibility to automated
services, it is better to use XML as the format of
such data. However, one issue with XML is that it
is difficult to maintain the high quality presentation
of TEX documents. This is caused by incompatibil-
ities between browsers and incomplete or immature
implementations of W3C Consortium standards.

We are optimistic that these issues will disap-
pear in the near future, and believe that XML will
become pervasive in the online environment. How-
ever, in our context, a key to the adoption of XML

is the degree to which it can be integrated with ex-
isting TEXnologies.

In this paper we examine one strategy for stor-
ing GUST articles in a custom XML format and pub-
lishing them with both TEX and XSLT/FO. Also, the
problems of converting the existing TEX files to XML

and the possibility of using TEX4ht—an authoring
system for producing hypertext—are discussed.

2 TEX/LATEX and Other Document
Formats

When the authors started work with TEX (many
years ago), there was only a choice between closed-
source applications based on proprietary formats, or

Preprints for the 2004 Annual Meeting 13

W lodzimierz Bzyl and Tomasz Przechlewski

TEX, for publishing significant documents. Nowa-
days, the choice is much wider, as XML-based so-
lutions are based on open standards and supported
by a huge number of free applications. We do not
need to write the tools ourselves. Thus the strategy
of reusing what is publicly available is key in our
migration plan.

On the other hand it would be unwise to switch
to XML as the only acceptable submission format,
because it would force many authors to abandon
their powerful TEX-based editing environments to
which they are accustomed, just to submit texts to
our bulletin. Following this route, we would more
likely end up with a shortage of submissions. Thus,
we are preparing a mixed strategy with both TEX
and XML as accepted formats. Papers submitted
in LATEX will ultimately be converted to XML as an
archival or retrieval format. Presentation formats
will be XHTML, with corresponding PDF generated
by a variety of tools. The work-flow of documents
in this proposed framework is depicted on Fig. 1.

XML LaTeX

PDF

HTML

. . .

tex4ht

XSLT db2latex

XSLT

DOCBOOK

pdfTeX

Figure 1: Processing diagram for XML/LATEX
documents.

The XML implementation project described in
the paper can be broadly divided into the following
subtasks: DTD development, formatting develop-
ment, and legacy information conversion [19]. We’ll
now describe these stages in detail.

3 DTD Development Considerations

There is no doubt (see for example [14, 19]) that
the DTD development phase is of critical impor-
tance for the overall success of any SGML/XML

project. Fortunately, thanks to the great interest in
XML technology in recent years, there are several
production-quality publicly available DTDs which
could be adapted for our project. To make this

choice, we preferred those which are widely used
and for which formatting applications and tools are
available. The following possible schemes were con-
sidered:

• DocBook [21], a complete publishing frame-
work, i.e., schemes plus XSLT/DSSSL style-
sheets for conversion to presentation formats;
actively developed and maintained; the de facto
standard of many Open Source projects; widely
known and used.

• TEI [1], another complete, actively developed
publishing framework. Not as popular as Doc-
Book, used mainly in academia.

• The LATEX-based DTD developed in [7] (further
referred as LWC DTD). The similarity to the
structure of LATEX is an advantage of this DTD

for our project.

• Others, such as DTD for GCA/Extreme confer-
ences, X-DiMi from the Electronic Thesis and
Dissertations Project, and the LATEX-like PMLA

developed by one of the authors [15].

Industry-standard DTDs tend to be too big, too
complex, and too general for practical use in specific
cases (cf. [14, p. 29]). In particular, the DocBook
and TEI DTDs seem to be too complex for marking-
up documents conforming to LATEX format.

As a result, users frequently employ the tech-
nique of using different DTDs at different stages of
the editorial process. Following Maler [14], we will
call the DTD common to a group of users within
an interest group as a reference DTD, while those
used solely for editing purposes as an authoring
DTD. Translation from one DTD to another may
be easily performed with an XSLT stylesheet.

We decided to use a simplified LWC DTD as
authoring DTD and DocBook as reference DTD.
Providing a simple DTD should expand the group
of prospective authors. For example, many GUST

members are experts in typography or Web design
but not necessarily TEX hackers.

The simplification consists of restricting the
document hierarchy only to article-like documents,
and removing back matter tags (index, glossary)
and all presentation tags (newline, hspace, etc.).
Also, the optional status of meta-data, for example
the title, abstract, keywords tags, was changed
to required. The resulting DTD contains 45 elements
compared to 64 in the original one.

For better maintainability, we rewrote our ver-
sion of LWC DTD into RNC syntax. The RNC

schema was introduced by Clark [6], and recently
adopted as an ISO standard. It has many advantages

14 Preprints for the 2004 Annual Meeting

Migrating to XML: The Case of the GUST Bulletin Archive

over DTD or W3C Schema syntax, namely simplicity
and an included documentation facility.1

As the structure of our documents is not partic-
ularly complex, it may be feasible to develop several
authoring DTDs targeted at different groups of au-
thors, for example one for those preferring ConTEXt-
like documents, another for those used to GCA con-
ference markup, etc., and then map those docu-
ments to the reference DTD with XSLT.

4 Formatting with XSLT

For presentation, LWC documents are first trans-
formed to DocBook with a simple XSLT stylesheet.

The DocBook XSL stylesheets [22] translate an
XML document to XHTML or FO [18]. As they are
written in a modular fashion, they can be easily
customized and localized. To publish XHTML from
XML documents, an XSLT engine is needed such as
Kay’s saxon [11] or Veillard’s xsltproc [20].

For hard copy output, a two-step process is
used. First, the XSLT engine produces format-
ting objects (FO) which then must be processed
with a formatting object processor for PDF output.2

The detailed transformation work-flow is depicted in
Fig. 2.

xslt processor
xslt stylesheet

LWC
document

DocBook
document

PDF

HTML

FO

other

latex

xslt processor

dblatex.xsl
html/docbook.xsl

fo/docbook.xsl

?.xsl

Figure 2: Processing details of LWC documents
with XSLT/FO.

With just a few customizations the translation
from XML to XHTML presents no obstacles (except
for math formulas). On the other hand, the quality
of the PDF produced with the publicly available fop
processor from the Apache project is poor compared
to that obtained with TEX.

Instead of generating FO objects one can use
XSLT to translate XML directly to high-level LATEX.
That is the method used in db2latex [3] (see also
a clone project: dblatex/dbcontext [9]; the latter,
of course, generates files processable by ConTEXt).

1 It is possible to convert between different schema lan-
guages for XML with the trang program [5]. There is also a
nxml-mode for GNU Emacs for editing of XML which features
highlighting, indentation, and on the fly validation against an
RNC schema [4].

2 Modern browsers have XSLT engines built-in. So, it suf-
fices to attach to a document appropriate stylesheets to make
the transformation on the fly.

The output can be customized at XSLT stylesheet
level as well as by redefining appropriate LATEX style
files. MathML markup is translated with XSLT to
LATEX and supported natively.3

The translation from DocBook to LATEX imple-
mented in these tools is incomplete. To get reason-
able results, prior customization to local needs is re-
quired. The main advantage of this approach is that
we use TEX—a robust and well known application.

5 The GUST Bulletin Archive

When considering the conversion of the GUST ar-
chive to XML we have two points in mind: first,
we recognize the long-term benefits of an electronic
archive of uniformly and generically marked-up doc-
uments; and second, to take the opportunity to test
the whole framework using ‘real’ data.

During the last 10 years, 20 volumes of the
GUST bulletin were published, containing more than
200 papers. From the very beginning GUST was
tagged in a modified TUGboat style [2]. The total
output is not particularly impressive, but the con-
version of all articles to XML isn’t a simple one-night
job for a bored TEX hacker:

• they were produced over an entire decade and
were written by over 100 different authors.

• they were processed with at least six major
formats (LATEX 2.09, transitional LATEX+NFSS,
LATEX 2ε, plain-based TUGboat, Eplain, and fi-
nally ConTEXt), using numerous macro pack-
ages, fonts, and graphic formats.4

As a group, the GUST authors are not ama-
teurs, producing näıve TEX code. On the contrary
they are TEX experts, writing on a diverse range
of subjects using non-standard fonts, packages and
macros. For example, Fig. 3 shows the detailed dis-
tribution of the TEX formats used in GUST.

In total, there were 134 plain TEX articles, com-
pared to 87 for LATEX. LATEX authors used 74 differ-
ent packages, while those preferring plain TEX nol-
ogy used 139 different style files. The proportion
of other formats (Eplain, ConTEXt, BLUE) was in-
significant (only a few submissions). It can also be
noted from Fig. 3 that in recent years, the propor-
tion of plain TEX submissions has decreased sub-
stantially in favor of LATEX.

It is obviously very difficult to maintain a repos-
itory containing papers requiring such a diverse

3 One approach which we did not try is to format FO files
with TEX. This method is implemented by S. Rahtz’ Passive
TEX [17].

4 Needless to say, all of these packages have been evolving
during the last 10 years, many of them becoming incompati-
ble with each other.

Preprints for the 2004 Annual Meeting 15

W lodzimierz Bzyl and Tomasz Przechlewski

93 94 95 96 97 98 99 00 01 02 03 year

papers

25

plain latex other total

Figure 3: Distribution of TEX formats used by
GUST authors.

range of external resources (macros, fonts). As a
result, many old papers are now unable to be type-
set owing to changes in underlying macros or fonts.

6 Conversion from TEX to XML

It may be surprising that only few papers report
successful conversion from TEX to XML: Grim [8]
describes successful large-scale conversion in a large
academic institution, while Rahtz [16] and Key [12]
describe translation to SGML at Elsevier.

Basically when converting TEX to XML the fol-
lowing three approaches have been adopted [16]:
• Perl/Python hackery combined with manual re-

typing and/or manual XML marking-up.
• Parsing TEX source files not with tex, but

with another program which generates SGML/
XML. This is the approach used by ltx2x [23],
tralics [8] and latex2html,5 which replace
LATEX commands in a document by user-defined
strings.

• Processing files with TEX and post-processing
the DVI files to produce XML. This is the way
tex4ht works.

Although the conversion performed with tralics
is impressive, we found the application very poorly
documented. After evaluation of the available tools
and consulting the literature [7], we decided to use
TEX4ht—a TEX-based authoring system for produc-
ing hypertext [10].

Because TEX formats contain many visually-
oriented tags, we could not expect to automatically
convert them to content-oriented XML markup.6

For example, the TUGboat format requires
only the metadata elements title and author
name(s); author address(es) and webpage(s) of the

5 latex2html was not considered as its output is limited
to HTML.

6 For example, see [16, 8]. Other examples, based on
GUST articles, are presented below.

author(s) are often absent and there is no obligation
for abstracts and keywords. Therefore, most of the
GUST articles lack these valuable elements. More-
over, bibliographies are inconsistently encoded.7

Having said that, our plan is to markup as many
elements as possible.

7 Translating TEX to XML with TEX4ht

Out of the box, the TEX4ht system is configured
to translate from plain, LATEX, TUGboat (ltugboat,
ltugproc), and Lecture Notes in Computer Science
(llncs) formats to HTML, XHTML, DocBook, or TEI.
To translate from, say, TUGboat to our custom
XML format the system needs to be manually con-
figured. Because the configuration of TEX4ht from
scratch is a non-trivial task, we consider other more
efficient possibilities.

The TEX4ht system consists of three parts:
(1) Style files which enhance existing macros with
features for the output format (HTML, XHTML,
etc.).8 (2) The tex4ht processor which extracts
HTML or XHTML, or DocBook, or TEI files from
DVI files produced by tex. (3) The t4ht processor
which is responsible for translating DVI code frag-
ments which need to be converted to pictures; for
this task the processor uses tools available on the
current platform.

As mentioned above, the conversion from a vi-
sual format to an information-oriented one cannot
be done automatically. Let’s illustrate this state-
ment with the following example marked with plain
TEX macros:9

\noindent {\bf exercise, left as an}

{\it adj\/} {\ss Tech} Used to complete

a proof when one doesn’t mind a

{\bf handwave}, or to avoid one entirely.

The complete phrase is: {\it The proof

\rm(or \it the rest\/\rm) \it is left as an

exercise for the reader.\/} This comment

has occasionally been attached to unsolved

research problems by authors possessed of

either an evil sense of humor or a vast

faith in the capabilities of their

audiences.\hangindent=1em

After translation of this fragment to XHTML by
tex4ht we obtain:
<p class="noindent"><span

class="cmbx-10">exercise, left as an

adj

7 Publicly available tools (see [13] for example) can auto-
matically mark up manually keyed bibliographies.

8 Altogether over 2.5M lines of TEX code. Compare this
with 1M code of the LATEX base macros.

9 The text comes from “The Project Gutenberg Etext of
The Jargon File”, Version 4.0.0.

16 Preprints for the 2004 Annual Meeting

Migrating to XML: The Case of the GUST Bulletin Archive

Tech

Used to complete a proof when one

doesn’t mind a <span

class="cmbx-10">handwave, or to

avoid one entirely. The complete phrase

is: The proof

(or the

rest) is left

as an exercise for the reader.

This comment has occasionally been

attached to unsolved research problems by

authors possessed of either an evil sense

of humor or a vast faith in the capabilities

of their audiences.</p>

and this could be rendered by a browser as:

We can see that tex4ht uses ‘span’ elements
to mark up font changes. These visual tags could
be easily remapped to logical ones unless fragments
of text with different meaning are marked with the
same tag. Here the tag cmti-10 was used to tag
both the short form ‘adj’ and the example phrase
(shown in the green italic font). To tag them differ-
ently we need different TEX macros specially config-
ured for TEX4ht. Note that the \hangindent=1em
was ignored by tex4ht. This command could not be
simulated, because hanging indentation is not sup-
ported by browsers.

So, the markup produced by the tex4ht pro-
gram is not logical markup. To get logical markup
the GUST format should be reworked and reconfig-
ured for TEX4ht.

Instead of configuring TEX4ht we could use an
XSLT stylesheet to remap elements referencing XML

format. This could be an easier route than config-
uring the system from scratch, while some TEX4ht
configuration could also help. So, a combination of
the two methods is envisaged to provide the best
results.

8 Conclusion and Future Work

We have not completed the conversion yet. How-
ever, based on the experience gained so far we can es-
timate that almost 70% of the whole archive should
be converted with little manual intervention. Semi-
automatic conversion of another 15% (34 papers) is
possible, with prior extensive changes in markup.
Conversion of remaining 15% is impossible or use-
less, where ‘impossible’ means the paper is easier

to retype than try to recompile and adjust tex4ht
just for a particular single case, and ‘useless’ applies
to papers demonstrating complicated graphical lay-
outs, or advanced typesetting capabilities of TEX.

Although our system needs improvement—con-
version of math is the most important remaining
item to investigate—we are determined to start to
use it in a production environment.

Finally, we note that many of our conclusions
and methods are also applicable to TUGboat, be-
cause the format used for typesetting GUST bulletin
differs only slightly from the one used for TUGboat.

References

[1] Lou Burnard and C. M. Sperberg-McQueen.
TEI lite: An introduction to text encoding for
interchange. http://www.tei-c.org/Lite/,
2002.

[2] W lodek Bzyl and Tomasz Przechlewski. An
application of literate programming: creating
a format for the Bulletin of the Polish TUG.
TUGboat, 14(3):296–299, October 1993.

[3] Ramon Casellas and James Devenish.
DB2LaTeX XSL stylesheets. http://db2latex.
sourceforge.net, 2004.

[4] James Clark. NXML mode for the GNU

Emacs editor. http://www.thaiopensource.
com/download, 2003.

[5] James Clark. Trang—multi-format schema
converter based on RELAX NG. http://www.
thaiopensource.com/relaxng/trang.html,
2003.

[6] James Clark and Makoto Murata. Relax NG

specification. http://www.relaxng.org/,
2001.

[7] Michel Goossens and Sebastian Rahtz. LATEX
Web Companion. Addison-Wesley, 2001.

[8] Jose Grim. Tralics. In EuroTEX Preprints,
pages 38–49, 2003. http://www-sop.inria.
fr/miaou/tralics. Final version to appear in
TUGboat.

[9] Benôıt Guillon. DocBook to LATEX/ConTEXt
publishing. http://dblatex.sourceforge.
net, 2004.

[10] Eitan Gurari. tex4ht: LATEX and TEX for
hypertext. http://www.cis.ohio-state.
edu/∼gurari/TeX4ht/mn.html, 2004.

[11] Michael Kay. SAXON—the XSLT and XQuery
Processor. http://saxon.sourceforge.net,
2003.

[12] Martin Key. Theory into practice: working
with SGML, PDF and LATEX. Baskerville,

Preprints for the 2004 Annual Meeting 17

W lodzimierz Bzyl and Tomasz Przechlewski

5(2), 1995. ftp://tug.ctan.org/pub/tex/
usergrps/uktug/baskervi/5 2/.

[13] Language Technology Group. LT TTT version
1.0. http://www.ltg.ed.ac.uk/software/
ttt, 1999.

[14] Eve Maler and Jeanne El Andaloussi.
Developing SGML DTDs: From Text to Model
to Markup. Prentice Hall PTR, 1995.

[15] Tomasz Przechlewski. Definicja dokumentu
typu PMLA. http://gnu.univ.gda.pl/
∼tomasz/sgml/pmla/, 2002.

[16] Sebastian Rahtz. Another look at LATEX to
SGML conversion. TUGboat, 16(3):315–324,
September 1995. http://www.tug.org/
TUGboat/Articles/tb16-3/tb48raht.pdf.

[17] Sebastian Rahtz. PassiveTEX. http:
//www.tei-c.org.uk/Software/passivetex,
2003.

[18] Robert Stayton. Using the DocBook XSL

Stylesheets. Sagehill Enterprises, http://
www.sagehill.net/docbookxsl/index.html,
2003.

[19] Brian E. Travis and Dale C. Waldt. The
SGML Implementation Guide: A Blueprint for
SGML Migration. Springer-Verlag, 1996.

[20] Daniel Veillard. LIBXSLT—the XSLT C
library for Gnome. http://xmlsoft.org/
XSLT, 2003.

[21] Norman Walsh and Leonard Muelner.
DocBook: The Definitive Guide. O’Reilly,
1999. http://www.docbook.org/tdg/en/
html/docbook.html.

[22] Wiki. DocBook XSL Stylesheets.
http://docbook.org/wiki/moin.cgi/
DocBookXslStylesheets, 2004.

[23] Peter R. Wilson. LTX2X: A LATEX to X
Auto-tagger. http://www.ctan.org/
tex-archive/support/ltx2x, 1999.

18 Preprints for the 2004 Annual Meeting

