
TUGboat, Volume 23 (2002), No. 3/4 261

Dreamboat

Floating point numbers and METAFONT,
METAPOST, TEX, and PostScript Type 1
fonts

Claudio Beccari

Abstract

Some features related to METAFONT, METAPOST,
and TEX, concerning the ability of such programs to
perform calculations, are discussed and the oppor-
tunity, not to mention the necessity, of extending
these programs to handle real numbers with float-
ing points calculations is strongly (and hopefully)
suggested.

1 Introduction

Every TEXie knows, or should know, that Donald
Knuth, the Grand Wizard of TEX and METAFONT,
designed these wonderful programs using only inte-
ger arithmetic. There are and there were at the be-
ginning of the eighties several reasons to choose this
solution. The many calculations TEX and META-
FONT have to do in order to compose a page or,
respectively, render the pixels of a character, are, or
were, certainly faster if integer arithmetic is used.

But perhaps the most stringent argument that
convinced Knuth to follow this strategy was not
speed, but the fact that by the beginning of the
eighties the various platforms where TEX and META-
FONT were supposed to run had different real word



262 TUGboat, Volume 23 (2002), No. 3/4

lengths, different real encodings, and, most substan-
tially, different precisions, so that the same source
program could not be guaranteed to have the same
results on different platforms, which was of para-
mount importance for Knuth’s goal of portability.

I must admit that even today that choice is
strategically perfect and very few people have expe-
rienced any drawback caused by this “limitation”.

Nevertheless, there are some fields where float-
ing point arithmetic is important, especially if we
consider that nowadays there has been a great deal
of standardization in the internal representation of
floating point numbers, and compilers are much
more uniform than twenty years ago. Certainly
there is no guarantee that the same input data pro-
cessed by the same input program on different plat-
forms yields the same results, but the probability of
getting the same results is much higher.

2 Fixed radix vs. floating point numbers

Both in TEX and in METAFONT (and later on, in
J. Hobby’s METAPOST) Knuth needed fractional
quantities and decided to use fixed radix notation.

2.1 Real numbers in TEX

Lengths, glues, muglues and the like are all intrin-
sically real quantities consisting of a measure and a
unit of measure. To implement fixed radix real num-
bers in practice, Knuth converted all these quanti-
ties into “scaled points”; a scaled point is the frac-
tion 1/216 of a printer’s point. Since this is the
smallest unit of measure used in TEX, and is such
a small quantity (it equals approximately 200 bil-
lionths of an inch and 5 millionths of a millime-
ter, more precisely 53.6 Å, a small fraction of the
visible wavelengths) this unit was correctly taken
as an indivisible part. Thus, any other unit, any
other length, glue or muglue could be thought of as
an integer number of scaled points. This in sub-
stance is the idea of a fixed radix number, a number
that has a fixed number of fractional bits and is ex-
pressed by an integer number which is the multiple
of the least significant bit. And this is precisely the
reason why a 32-bit word can hold limited quanti-
ties which amount to, in our case, a maximum1 of
(214 − 1)pt = 16 383pt. Since this huge number of
points approximately equals 19 feet or 6 meters, it
appears that the fixed radix notation is more than

1 Since 16 bits represent the fractional part, there remain
16 bits available for the integer part; one bit is used for the
sign (or equivalent) and the other is for special purposes; there
remain 14 bits available for the integer part of a fractional
number, hence the maximum value is 214 − 1.

adequate for representing every useful piece of typo-
graphic information.

The transformation between input data (in dec-
imal notation with a variable number of decimal dig-
its) into a fixed radix number is done in the mouth
of TEX, I suppose; that is when input data is being
tokenized for further processing in TEX’s stomach.

The allowed operations that TEX can perform
on numerical data are addition, subtraction, multi-
plication and division, but with strong limitations;
counters can be assigned integer values, including
the contents of length registers, where the lengths
have already been transformed into fixed radix num-
bers, that is into integers. Lengths, glues and mu-
glues may be added, subtracted, and may be mul-
tiplied or divided by integers; in the input stream
they can be “multiplied”, or should I say “scaled”,
by a real number; this means that if you have a
length variable named, say, \foo, containing some
value, you can write something like this in your in-
put stream

\foo=0.67\foo

or in LATEX

\setlength{\foo}{0.67\foo}

by which the contents of \foo is substituted with its
previous contents multiplied by 0.67.

All of the graphic extension packages to TEX
and LATEX, such as PICTEX, have to produce some
sort of calculation between real numbers; TEX was
not built for that, but by means of some “dirty
tricks”, such as the ones described in Appendix D
of The TEXbook [1], the task becomes possible. For
example a multiplication is performed as such: the
first factor “scales” the fixed length of 1 pt and is
assigned to a length variable; this length variable
is scaled by the other factor, and finally the result
is extracted by means of the primitive \the and
stripped of the ending pt unit of measure. Divisions
are more complicated because of the possibility of
dividing by zero and because they might give rise
to oversized results (this can happen as well with
multiplications). The extension package calc.sty
helps the user in specifying the calculations to be
performed on the fly, but does not extend the pos-
sibilities offered by TEX primitive commands. Close
examination of the various other extension pack-
ages available in the CTAN archives clearly shows
the many efforts spent by several TEXies in order to
help making calculations a little more comfortable
and reliable.

Notice that LATEX’s New Font Selection Scheme
frequently performs this kind of calculation, includ-
ing stripping the pt part from \the output.



TUGboat, Volume 23 (2002), No. 3/4 263

Another extension that makes heavy use of real
numbers is the graphics package, which needs to
determine the transformation matrix coefficients for
rotations by means of the trigonometric functions.
By reading the code, I discovered marvels of nu-
merical computation; even considering that the TEX
community includes many people with varying com-
petence and skill, I must admit that these sorts of
numerical procedures are difficult to find even in the
specialized literature.

For this reason, writing any extension package
that requires any kind of calculation becomes very
difficult and error prone.

2.2 Real numbers in METAFONT

METAFONT works with integer and real numbers
in a very efficient way; actually all numbers may
be thought of as real numbers. It performs any
kind of operation and allows the user to specify also
some ordinary irrational and transcendental func-
tions such as the trigonometric ones, logarithms and
exponentials; it actually deals with complex num-
bers, whose real and imaginary components are real
numbers, but users not skilled in complex analysis
need not worry about them. Whoever has done any
work with METAFONT cannot but be surprised in
discovering its endless resources.

Nevertheless, even METAFONT uses fixed radix
real numbers and the largest one, according to The
METAFONTbook, is 4095.99998, which, taking into
account the fractional part, equals 4096−2−16. Now
since 4096 equals 212 Knuth reserved four bits of the
integer part for the sign and other internal META-
FONT requirements. If that number is considered
as a number of points, that is almost 5 feet or one
meter and a half, certainly more than sufficient for
drawing any character. The same limitations hold
true for METAPOST.

If the instructions given to METAFONT, or to
METAPOST, are correct, very rarely are they forced
to issue overflow or underflow messages; nevertheless
sometimes it happens. One such instance happened
when trying to convert the METAFONT description
of very large math delimiters into Type 1 PostScript
format, since the program that does this conversion
runs METAFONT with a pixel density large enough
to fit the 1000× 1000 PostScript coordinate space.

3 Floating point numbers

A floating point number, for those who are not fa-
miliar with this terminology, is a real number writ-
ten down in a special way and may be thought of as
being made up of two parts: the mantissa and the
exponent. For example the decimal number 105.234

may be written in the form 0.105234 · 103; 0.105234
has a null integer part, as any other floating point
number, so that the significant information is con-
tained in the mantissa “105234” and in the expo-
nent of 10, “3”, and these two numbers are all that
is needed to identify a floating point number. Since
the exponent may be very large in absolute value
and the mantissa can contain many digits, the float-
ing point representation can deal with an extremely
wide range of numbers.

So, what is the difference between fixed radix
and floating point numbers, neglecting their range
and coding system? The main and fundamental dif-
ference is the precision: fixed radix numbers have
a fixed number of fractional digits, leading to a
fixed absolute precision, while floating point num-
bers have a fixed number of significant digits, lead-
ing to an approximately fixed relative precision. The
minimum distance between two consecutive fixed
radix numbers is 2−16, while the minimum distance
between two consecutive floating point numbers2 is
2−24 times the base 2 raised to the exponent of the
floating point number.

Floating point numbers are essential for engi-
neers, physicists, technologists, etc., whose achieve-
ments wouldn’t even exist (or at least would be much
less impressive) if they had to work with fixed radix
numbers. Engineers in particular are the masters of
approximation, the “artists” of approximation; en-
gineering theories are based on reasonable simplifi-
cations and approximations so as to render the more
exact physical theories applicable and useful. As an
engineer— did you have any doubt? — I like float-
ing point numbers, even if I appreciate the efforts
made by the mathematicians and by Knuth in par-
ticular for producing such wonderful masterpieces of
the “art of computer programming” given by TEX
and METAFONT.

4 New typesetting systems

As every reader of TUGboat knows well, there are
several teams that are working on “upgrades” of

2 A word length of 32 bits, the same as with fixed radix
numbers, is divided in two parts: 24 bits for the mantissa
and 6 bits for the exponent (let me skip the technicalities)
plus two bits, one for the sign of the mantissa and one for the
sign of the exponent. This means that exponents of the bi-
nary base 2 can range from −63 to +63. High level languages
such as Pascal or C (the two languages that TEX is commonly
translated to from its original WEB literate programming lan-
guage) also support double precision floating point numbers
(64 bits) and sometimes even quadruple precision (128 bits);
such representations allow for increased precision mantissas
and an even larger range for the exponents, but I think they
are excessive for our purposes with TEX and METAFONT.



264 TUGboat, Volume 23 (2002), No. 3/4

TEX. I am not aware of any work going on for up-
grading METAFONT, but maybe I am wrong.

As every reader knows well, Knuth declared
some years ago that TEX and METAFONT are frozen;
any further modification will simply correct existing
errors, but the programs will not be modified so as
to add new functionality. But Knuth himself en-
courages downward compatible new programs that
can do things that the actual TEX and METAFONT

cannot do.
The very popular pdfTEX offers the opportu-

nity of producing portable document formatted doc-
uments directly from a tex source; this is not the
only new functionality, because pdfTEX improves
the already excellent TEX paragraph line breaking
algorithm by implementing a hanging punctuation
facility and variable width font justification. TUG-
boat readers may have enjoyed the transcript of Hàn
Thé̂ Thành’s PhD thesis on this subject [4].

ε-TEX [6] is another approach to extending TEX:
it removes the limitation of 256 counters, lengths,
glues, . . . , it allows bidirectional typesetting, this
feature being very useful for mixing languages such
as Latin/Cyrillic/Greek scripts with Hebrew and/or
Arabic ones, plus many other improvements, too
many to go into a detailed description. I directly
asked Phil Taylor, one of the authors of ε-TEX within
the NT S working group, to examine the possibility
of extending the program functionality to floating
point numbers, but he very humorously refused in a
unquestionable way.

Another ongoing project is Ω, by Plaice and
Haralambous, together with its companion Λ; the
former extends TEX while the latter is the Ω exten-
sion of LATEX. Besides removing the limitation of
256 counters, lengths, etc., Ω can deal with Unicode
fonts because it can address glyphs in a set of 215

instead of being limited to the 256 characters per
font we are all used to. The many other enhance-
ments offered by Ω are described in [7]. A shorter
but extremely good description of Ω and Λ is in [8,
chap. 10].

Maybe one day all these project extensions of
TEX will be merged in the successor of TEX; but as
far as I know none of them deals with floating point
numbers. Very nasty situation for a fond appreciator
of floating point numbers such as myself.

But what I am asking is nothing special: it sums
up to introducing the notion of floating point num-
bers, with the associated fpcounters, and a set of
rules for operating on them: (a) the usual arith-

metic operations, (b) the trigonometric functions,3

logarithm, exponential, square root (as they are pro-
vided by Pascal and C), (c) a set of rules for mixed
mode calculations, and (d) extension of the allow-
able TEX expressions as they are defined in ε-TEX,
although ε-TEX now accepts all numerical quantities
except real numbers.

I propose the usual operations on numbers with
different operand types, such as: any arithmetic op-
eration between floating point and integer numbers,
the result being floating point; truncation of a float-
ing point number to an integer; scaling of lengths
by floating point numbers, the result being a length;
the assignment of a length to a floating point vari-
able, where the implied fractional separator is taken
into account; the same operations on glues (with
the same limitations); and so on. Most of these op-
erations are already hardwired in the high level lan-
guages, so that their implementation is quite simple;
the remaining ones imply operations (multiplication
and division) between floating point numbers and
fixed radix ones, which should not be a problem at
all.

Nothing should be changed in the way this sug-
gested extension to TEX formats paragraphs and
pages for at least one obvious reason: it should yield
exactly the same results as TEX, in order to be a
downward compatible extension producing the same
results for existing documents. But the extension to
real numbers could produce simpler and more effi-
cient extension packages, especially those that have
to deal with graphics, and with PostScript and pdf
output.

5 Real numbers and METAFONT

As I explained above, METAFONT already uses real
numbers, although they are internally represented
with fixed radix ones. I believe that the modification
of METAFONT into a new program that uses floating
point real numbers could avoid some of the actual
limitations on the size of the quantities dealt with,
with negligible impact on the shape of the characters
being produced.

When Knuth decided to use fixed radix real
numbers in METAFONT, computers used to behave
in different ways and by the start of the ’80s were
rather slow compared to modern computers. Back
in 1985 my 286 AT computer with an 8 MHz clock
needed a few minutes to produce any one of the
128 character fonts of the Computer Modern family.

3 The default angle unit should be the nonagesimal de-
gree, as in METAFONT, not the radian.



TUGboat, Volume 23 (2002), No. 3/4 265

Now my Pentium based laptop requires a few sec-
onds to produce any one of the 256 character fonts
of the EC family, although my laptop is rather “old”
and runs with a clock of 233 MHz. Back in the ’80s
integer arithmetic (as the fixed radix representation
substantially is) was much faster than floating point
arithmetic; modern CPUs have special facilities for
floating point arithmetic so that the number of float-
ing point operations per second is not dramatically
different from the corresponding number of integer
operations as it was in the past.

At the same time the implicit rounding involved
in any fixed radix multiplication (and division) im-
plies that results are “never” precise, but always ap-
proximate; if you ask METAFONT to show the result
of the expression (1/3)*3 it will display 0.99998,4

instead of 1.00000 as shown on page 62 of The
METAFONTbook [2], together with many other cal-
culations that exhibit the same sort of “error”. With
floating point numbers the situation would not be
any worse, because with 24 bits available for the
mantissa, floating point real numbers have from 6
to 7 “precise” significant decimal digits (the rela-
tive error ranging approximately from 6 · 10−8 to
10−6).

But in my opinion the opportunity to change
METAFONT to floating point arithmetic arises from
the strong arguments connected to section 7.

6 Real numbers and METAPOST

METAPOST also works with fixed radix arithmetic
(although nothing is said about in the user manual
[3]), but since its purpose is to output graphics of
different kinds in PostScript format, and since Post-
Script uses floating point arithmetic, the arguments
discussed in section 7 become even more compelling
for extending METAPOST to floating point arith-
metic.

7 PostScript and floating point arithmetic

The PostScript language uses both integer and real
numbers, the latter being operated upon as floating
point numbers.

When Knuth wrote TEX and METAFONT, Post-
Script, and in particular PostScript fonts, were in
their infancy. Printers that could interpret the Post-
Script language were expensive and relatively slow,
to the point that when Tom Rokicki wrote his ex-
cellent translator from dvi to PostScript, he stated
that “pk fonts produce better results and run faster

4 With floating point numbers having 24 bits for the man-
tissa the same calculation would yield 0.99999994 with a rel-
ative error of 6·10−8; the fixed radix calculation has a relative
error of 2 · 10−5.

on PostScript printers”.5 When Rokicki originally
wrote his translator, this was true, in the sense that
processors and language interpreters mounted on
the PostScript printers and phototypesetters of that
age were much slower that modern printers and pho-
totypesetters.

At that time there was no Portable Document
Format (pdf), so PostScript output was originally
used only for printing. Previewing was made possi-
ble by Ghostscript (by Peter Deutsch) and Ghost-
View (by Tim Theisen), respectively a PostScript
interpreter intended to be resident on the computer
instead of the printer and capable of driving a va-
riety of output devices, and a graphic interface for
displaying the PostScript output on the screen with
the ability of moving within the virtual document.

Nowadays, pdf has become a standard for mov-
ing typeset documents from one computer to an-
other along the infinite routes of the Internet, with
the assurance that each document will be viewed,
and possibly printed, in the same way on any plat-
form, running under any operating system. The
TEX suite has been complemented with the pdfTEX
typesetting program [4], with its pdfLATEX variant,
with the hyperref.sty extension package, so as to
make available internal and external cross-linking,
and so on.

On the other side the PostScript output pro-
duced by dvips may also be converted to pdf for-
mat with Adobe Distiller, by Ghostscript itself (by
specifying the suitable output driver and the other
necessary pieces of information), and other tools.

But this is the real point: viewers for pdf docu-
ments display bitmapped fonts very poorly. At the
same time, pdf documents are to be read (primar-
ily) on the screen, irrespective of the screen pixel
density and size. On large screens the reader may
want to keep more than one window open, so that
resizing windows implies the simultaneous resizing
of what is contained in the window itself. Bitmaps
are very poor suited to this task, and bitmapped
fonts may become almost unreadable even if orig-
inally they were produced with high pixel density
settings. Printing the documents does not suffer so
much from the poor quality of bitmapped fonts on
the screen, because the physical page cannot be re-
sized at will.

In other words TEX, LATEX, and other TEX di-
alects, have to drop the bitmapped fonts, as well as
pdfTEX, pdfLATEX, etc. All these programs must be
capable of using Type 1 PostScript fonts.

5 I am quoting by heart, because the last documentation
on his translator dvips, [9], does not contain this statement
any more.



266 TUGboat, Volume 23 (2002), No. 3/4

This explains why recently the CTAN archives
have seen a variety of package extensions that make
available complete PostScript fonts to TEX and, es-
pecially, to LATEX; I am referring myself to the excel-
lent txfonts (Times extended) and pxfonts (Pala-
tino extended), that are complete in the sense that
they contain all the glyphs, ligatures, symbols that
are used by LATEX with the amsmath extension, plus
many more; if the T1 encoding is specified the font
glyphs corresponding to the 256 character TEX en-
coding are all present, and if the textcomp exten-
sion package is invoked, the Text Companion glyphs
become available. All families, series and shapes
are available and are designed in such a way that
blend together without the difficulties experienced
in the past when the standard PostScript fonts were
adapted via several patches (and several omissions)
for use with TEX. Another precious set of Type 1
fonts is the collection of the CM-super fonts; these
are Type 1 fonts including the Latin and the Cyrillic
alphabets, all the math fonts and the Cork encoded
fonts. In a near future it should include also my
Greek fonts, at least the author is working on it.
The Latin Modern font collection is an even more
recent development, not to mention the CM-LGC
font collection that contains the PostScript versions
of the CM Latin, Greek and Cyrillic fonts. Both
available in the CTAN archives.

But this trend is going to cut off METAFONT

from the TEX community if it does not upgrade to
output PostScript format.

This is the real point I would like to stress in
order to support my request for floating point arith-
metics in TEX, METAFONT, and METAPOST.

8 METAFONT, METAPOST, and Type 1
PostScript fonts

The CTAN archives contain many different fonts de-
signed with METAFONT; such fonts are generally of
a very high quality, unless they were just filling the
role of patches for supplying certain glyphs not avail-
able elsewhere.

It is possible to convert the METAFONT gen-
erated fonts to PostScript format in a variety of
ways, most of which are also applicable to convert-
ing bitmapped fonts obtained by optically scanning
original specimens. Some information is available in
the paper [18]; more recently Karl Berry has written
a detailed paper which appeared in TUGboat [10],
showing some of what can be done with the software
tools available today.

Here I summarize some of these tools and add
some of the information I collected either by direct
experience or from the documentation. In any case

I must warn the reader that most of these programs
are native on UNIX or Linux platforms. However, by
means of the environment cygwin [11] such programs
can be operated also on Win32 platforms (some-
times with minor limitations); therefore, it is not
a problem to load and use these programs even if
one doesn’t have a Unix or Linux platform.

8.1 METAPOST and roex

METAPOST can directly read METAFONT programs
and produce PostScript files —but they have to be
edited quite a bit in order to make PostScript fonts,
and then the result is not of Type 1, but of Type 3.
The main difference is that every connected part
of each glyph in Type 1 fonts is described by just
two contours, the external one and the internal one,
while METAFONT, and thus METAPOST, produce
the glyphs as a superimposition of several strokes
that intersect or join superimposing some of their
parts, so that they may only be classified as Type 3.
But this limitation can (sometimes) be overcome, so
read on:

CTAN holds an extension to METAFONT that
allows for redefining the filldraw and stroke META-
FONT commands at shipout time, so as to join
several strokes into a single stroke with one exter-
nal and one internal contour. This makes the out-
put suitable for further processing by METAPOST to
produce PostScript files that conform with Type 1
format, as described above. The resulting files still
have to be edited and merged in order to have a
single file describing the whole font. The exten-
sion package for removing overlaps and expanding
strokes in METAFONT fonts is contained in the file
roex.mf available from CTAN within a zipped file
roex.zip that contains other valuable information
and examples [19]. The drawback is that this pro-
cedure is not suitable for processing existing META-
FONT fonts because roex is not infallible and some
editing of the source code may be required.

8.2 Autotrace

The Internet offers a mighty program, autotrace
[12] by Martin Weber, together with a graphical
front end frontline (available from the same home
page as autotrace) that may be used for deter-
mining the contours of arbitrary stroked lines, and
therefore of character glyphs. You may refer to Karl
Berry’s paper [10] for a short description of the pos-
sibilities of this software.

The essential point is that autotrace can de-
termine the third order Bézier splines that make up
the internal and the external contours of every con-
nected part of a glyph, so as to output the node and



TUGboat, Volume 23 (2002), No. 3/4 267

control points of such splines, which in turn are the
only information PostScript requires for drawing the
glyph. The input to autotrace must be a bitmap in
certain specialized formats; the most likely for our
purposes is the ‘portable network bitmap’ (.pnm).

8.3 Pfaedit

The superb interactive graphical font editor pfa-
edit by George Williams [13] supports creating and
editing PostScript and TrueType fonts. It is capable
of importing bitmaps, including the gf format that
METAFONT outputs, and of invoking autotrace so
as to trace them.

By the end of the tracing task the designer
already has the contours of each and every glyph
already set in its graphical window, so that she
can optionally edit the contours and/or simplify the
set of nodes; add kerning and ligature information,
write the initial PostScript preamble information;
and eventually output the font file in pfa (printer
font ASCII), pfb (printer font binary), TrueType,
or other formats.

8.4 textrace and mftrace

In spite of the apparent simplicity of the operation
with autotrace through frontline or pfaedit, it
is even easier and faster to operate through one of
two other front-end scripts that make the necessary
preliminaries, launch the programs, and output the
desired font files.

The Perl script textrace [14] can analyze a
bitmapped drawing and build up the contours com-
prising it. It produces the bitmap file in pnm format
with the necessary scaling for the 1000× 1000 Post-
Script coordinate space, and launches autotrace
with suitable parameters. It eventually assembles
the PostScript font and outputs its file in the de-
sired format. As far as I know, most of the META-
FONT fonts now available on the CTAN in PostScript
format have been produced by using textrace or
similar programs. Also the EC fonts, as produced
with textrace, have been available on the CTAN

for some time (but I can’t give credit to the author
because his/her name is encrypted in his/her e-mail
address).

The Python script mftrace by Han-Wen Nien-
huys [15] was formerly known as pktrace; the name
was changed to the present one after some interac-
tion with its author who was so kind to introduce
some specific extensions so as to allow me to use the
program in a cygwin environment without resorting
to the teTEX distribution (available with cygwin),
but by using the MikTEX distribution that I had on
my laptop. mftrace is a Python script explicitly

designed for translating METAFONT fonts to Post-
Script format. It starts by generating the tfm file,
if it’s not already available (this operation must be
done by hand under cygwin with MikTEX); from this
file it computes the magnification to feed to META-
FONT in order to scale the generated bitmap in gf
format to suit the 1000×1000 PostScript coordinate
space. It then transforms the gf bitmaps to the pnm
format and feeds such new bitmaps to autotrace
with suitable parameters. Next, it feeds the gener-
ated code to pfaedit with suitable parameters and
optionally with the specification of an encoding, so
as to optionally simplify the contours and to fill up
all the necessary information in the font preamble;
the output is finally written to a pfa or a pfb file.
Nothing else should be necessary for using the font,
because the TEX metric file was available or was
explicitly generated during the process, except for
adding the font name to a font map that dvips, or
pdftex, or dvipdfm can access and read.

8.5 Metafog

Finally there is metafog, a program for doing ex-
actly the direct passage from METAFONT to Post-
Script. It was written by Richard Kinch, who also
wrote a paper on the subject [16]. From what I
know, it is not in the public domain, in that it is
only available by buying Kinch’s TrueTEX product.

- * -

I have used mftrace and obtained good results
in very little time; since I have available a cygwin
environment, I can draw fonts with pfaedit, or I
can do the work with METAFONT and then pass
the result to mftrace. Being accustomed to META-
FONT, I find it more comfortable to use the the latter
method, but I always verify the result with pfaedit
and possibly make some little corrections.

9 Proposal for a PostScript-enabled
METAFONT

But if metafog, mftrace, and the like already do
the conversion, why am I pleading in favor of the in-
troduction of floating point arithmetics in TEX and
especially in METAFONT and METAPOST? Well, on
one side metafog is not publicly and freely available
as are all the other pieces of software that belong
to the TEX distributions. On the other, it’s a philo-
sophical position: I find it stupid to start with a
beautiful piece of software such as METAFONT, that
has so many facilities for finding the contour points
and for describing the third order Bézier arcs in or-
der to draw the glyph strokes, to proceed with ras-
terization that loses all this information even if it



268 TUGboat, Volume 23 (2002), No. 3/4

smoothly handles the arbitrary (convex) pen shape,
and to try to recover it from the rasterized draw-
ing when you had all the information from the very
beginning.

Unfortunately I can’t program in a decent way
either in Pascal or in C; my knowledge of META-
FONT is greater than the average user’s, but it is
far from perfect. My geometrical competence is
nowhere near that of John Hobby, just to mention
the author of METAPOST and the contributor of
the algorithm for finding the control points of the
third order Bézier splines as described by Knuth on
pages 130–131 of The METAFONTbook. Therefore
I cannot give any suggestion to someone who might
want to try to work on a New METAFONT.

Such a New METAFONT should be downward
compatible with the “old” METAFONT, of course,
just as ε-TEX and pdfTEX are downward compati-
ble with TEX. But one of the modes should be a
ps mode, by which a font pfb file is produced to-
gether with the usual TEX font metric file. The files
produced this way should be quite a bit smaller and
the scalable fonts should be drawn in a simpler way,
since the splines are generated directly by META-
FONT with the minimum number of points; anybody
who has designed a font knows well that rarely does
a particular glyph require more than a dozen triplets
of z points; some simple strokes require just a couple
of triplets, because the control points are determined
by METAFONT itself. Altogether, most glyphs may
be drawn with less than two dozen points for the
inner and respectively the outer contour, which is
much less than what you get when using mftrace
or textrace or any other interface to autotrace.

Not only that, but the New METAFONT might
be capable of producing Multiple Master fonts with
little or no effort; in fact the Computer Modern
fonts by themselves are a collection of several master
fonts, cmr5, cmr6, cmr7, cmr8, cmr9, cmr10,
cmr12, cmr14, cmr17; every stroke is described by
the same METAFONT statements, only the dimen-
sional parameters are varied from one master to the
other, giving rise to a set of fonts that are not ob-
tained one from the other by simple scaling opera-
tions.

The EC fonts by Jörg Knappen do even bet-
ter: the parameters are defined in a single file as
vectors of data in univocal correspondence with the
design size. EC fonts have master files that contain
in their name the design size, so that ecr1440.mf is
the master file for the serifed upright medium font
and its design size of 14.40 pt is set by a statement
contained in this master file. But nothing forbids
copying and editing that file into another one, say

ecr3125.mf where the design size assignment is cor-
rected to 31.25 pt, run it and get the font designed
at that very size, without any magnification.

The CB Greek fonts, in this respect, are even
simpler, in the sense that the design size is directly
determined by the font name, stored in the jobname
variable, that contains in the last four characters
the design size multiplied by 100. Therefore the CB

Greek master files have all the same contents, be-
cause they need not be edited in order to redefine
the design size.

Well, the New METAFONT might be able to
read all the font master files starting with the same
literal preamble, for example all the cmr5.mf ...
cmr17, get all the parameters and produce a single
Multiple Master Type 1 PostScript font, named, say,
cmr; the same could be done with the EC fonts or
the CB Greek ones.

On this subject there is an extension package,
together with its documentation, that already sort
of simulates Multiple Master fonts with METAFONT;
see [17] for further details.

All these capabilities are already embryonically
present in METAFONT and METAPOST: why not
to try to develop them and bring them to light?
METAFONT and METAPOST are powerful tools for
font (and graphic) design, much more powerful than
most other extant programs for font design. Why
should we, the texmf community, give them up in
favor of less sophisticated programs?

10 Conclusion

The line of thought of introducing floating point
numbers in TEX, METAFONT, and METAPOST car-
ried me further, into discussing the urgent need to
think also to a New METAFONT program capable of
directly producing Type 1 PostScript fonts, possibly
even Multiple Master fonts. In this way it is possi-
ble to keep both TEX and METAFONT up to date
with the modern necessities of document produc-
tion, compatible with the Portable Document For-
mat. In fact, by its very nature, it suggests that doc-
uments are directly read from the computer screen,
a task that today’s METAFONT fonts are not partic-
ularly good for.

References

[1] Knuth D.E., The TEXbook, Volume A of the
series “Computers and Typesetting”, Addison
Wesley, Boston (1986).

[2] Knuth D.E., The METAFONTbook, Volume C
of the series “Computers and Typesetting”, Ad-
dison Wesley, Boston (1986).

[3] Hobby J.D., User manual for METAPOST, file



TUGboat, Volume 23 (2002), No. 3/4 269

mpman.pdf, (1997), in any CTAN repository.
[4] Hàn Thé̂ Thành, Microtypographic extensions

to the TEX typesetting system,, TUGboat 21.4
(2000), pages 317–434.

[5] Hàn Thé̂ Thành, The pdfTEX user manual, file
pdftexman.pdf, (2000), in any CTAN reposi-
tory.

[6] Breitenlohner P., The ε-TEX manual, file
etex man.pdf, (2000), in any CTAN repository.

[7] Plaice J. and Haralambous Y., Draft doc-
umentation for the Ω system, file omega-
manual.pdf, (1999), in any CTAN repository.

[8] Syropoulos A., Digital typography Using LATEX,
Springer Verlag, New York 2002.

[9] Rokicki T., a DVI-to–PostScript translator, file
dvips.dvi, (1997), in any CTAN repository.

[10] Berry K., “Making outline fonts from bitmap
images”, in TUGboat, v. 22 (2001),No. 4,
p. 281–285.

[11] cygwin, a Unix-style environment that al-
lows operating a Unix program on a 32-bit
Windows platform; available from http://
sources.redhat.com/cygwin.

[12] Weber M., autotrace, available from http://
autotrace.sourceforge.net.

[13] Wilson G., pfaedit, available from http://
pfaedit.sourceforge.net.

[14] Szabó P., textrace, contained in
textrace-latest.tar.gz to be found in
any CTAN repository or available from
http://textrace.sourceforge.net.

[15] Han-Wen Nienhuys, mftrace, available from
http://www.cs.uu.nl/~hanwen/mftrace/
index.html

[16] Kinch R., “MetaFog: Converting METAFONT

shapes to contours”, TUGboat 16.3 (1995),
pages 233–243.

[17] Berdnikof A.S. and Turtia S.B., mmf.sty:
Computer Modern Typefaces as the multiple
master fonts, file mff.dvi, (1997), in any CTAN

repository.
[18] Pakin S., mf2pt1 – Produce PostScript Type 1

fonts from METAFONT source, file mf2pt1.pdf,
(2001), in any CTAN repository.

[19] Jackowski B., Pianowski P. and Ryćko M.,
“Package for removing overlaps and ex-
panding strokes”, file roex.zip, (1998), in
/graphics/MF-PS in any CTAN repository.

� Claudio Beccari
Politecnico di Torino, Turin, Italy
claudio.beccari@polito.it


