
The TEXspecTool for Computer Aided Software Engineering

Stephen E. Oliver
Whiteshell Labs, Pinawa, Manitoba, Canada R0E1A0
seolivers@bellsouth.net

Abstract

This paper reviews the development of the TEXspec tool, which assists in
the development and documentation of quality assured software in a regulated
environment. The tool can assist in the development of a broad range of software,
but targets the development of software that implements mathematical models.
The original application relates to the development of models of a repository
for Canada’s high level nuclear waste, but is not limited to this use. TEXspec
is particularly useful when documenting models and associated programs which
rely on mathematical notations to communicate the intent of the software.

Problem Definition

Canada has developed computer programs to model
a deep geologic repository for used nuclear fuel [3,
2]. Regulators require that these programs be
of demonstrably high quality to support licence
applications.

In 1999, the Canadian Standards Association
(CSA) adopted standard N286.7 [6] for the develop-
ment of nuclear safety related computer programs,
a scope that includes the AECL models. While the
software development process used to date had been
considered robust, it required refinement in order to
achieve compliance with this standard.

The TEXspec project seeks to address the issue
of compliance with CSA N286.7. The tool supports
a compliant software development procedure, while
imposing a minimum of additional overhead. While
optimised to meet requirements associated with
the modeling nuclear fuel waste, it is hoped that
TEXspec will find more common usage.

Several commercial Computer Aided Software
Engineering (CASE) tools will support a robust
software development methodology, but none pro-
vide support for the mathematical notations that
are common in scientific models. TEXspec provides
extensive support for this notation.

Software Development Methodology. Al-
though Object Oriented (OO) analysis and design is
appropriate for documenting many software applica-
tions, there are still applications for procedure/flow
based software. In particular, some models which
are basically linear in structure are best described
using structured (non-OO) methodologies.

Many scientific models have, to date, been
described using a modified Yourdon/DeMarco

methodology [5, 11]. Although OO methods would
perhaps be more appropriate for some models, prior-
ity is given to the more common Yourdon/DeMarco
analysis methodology. Products associated with this
methodology are:

• data flow diagrams (DFDs),
• process descriptions (mini-specs),
• structure charts,
• subprogram design descriptions, and
• data dictionary listings.

DFDs and mini-specs comprise the require-
ments specification, while structure charts and sub-
program design descriptions document the design.
Data dictionary listings may be separated into re-
quirements and design, or combined into a single
product.

Requirements Specification. Figure 1 illustrates
the main concepts of data flow diagrams. Diagram 0
shows the input and output ‘flows’ to/from a single
‘process’. This high level abstraction is intended
to allow the reader to identify the functions of
the complete system. Process 1 is broken into
components in Diagram 1. The diagrams may be
thought of as a hierarchy, with higher level diagrams
having shorter process numbers (i.e., Diagram 1.2.3
is ‘higher’ than Diagram 1.2.3.4) The numbering
convention of the diagrams and the processes allows
the decomposition to be clearly seen. Once processes
are decomposed to a point where they can be clearly
specified in a short textual description, they appear
on a DFD with a double circle, as Process 1.4
illustrates. Such ‘atomic’ processes are associated
with a mini-spec, rather than a lower level diagram.

TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting 197

mailto:seolivers@bellsouth.net

Stephen E. Oliver

Data flows, like processes, can be broken up into
constituent parts on lower diagrams. In figure 1,
for example, ‘Implements’ on Diagram 0 becomes
‘Measuring Cup’, ‘Bowl’, ‘Oven’, and ‘Pan’ on
Diagram 1. These flows are associated with multiple
processes on Diagram 1, so they must be shown
individually.

Figure 1: Example Data Flow Diagrams (DFDs)

Mini-specs for each atomic process repeat some
of the information on the DFD, and also detail the
requirements for a low level process in any manner
deemed suitable by the author. For scientific codes,
mini-specs often make extensive use of diagrams and
mathematical notations.

Design Specification. Figure 2 illustrates the
main concepts of structure charts. The boxes rep-
resent ‘subprograms’ to be composed in a proce-
dural programming language such as FORTRAN.
The chart is intended to illustrate the nature of the
interface between subprograms. The lines between
the subprograms indicate a ‘calling’ relationship,
with the subprogram which is closer to the top of
the structure chart invoking the lower. The transfer
of data at these interfaces is also shown. Data can
be passed from one subprogram to another via an
argument list (shown along the connecting line), or
through common storage that can be accessed from
multiple subprograms (shown inside the subprogram
box). The interface variables can be input, output,

or both, as denoted by arrowheads next to the
variable name.

Structure charts do not have a hierarchical
organization paralleling DFDs. However, a large
structure chart may span many pages using off-page
connectors.

Each subprogram must itself be documented.
Subprogram design descriptions repeat some of the
information on the structure chart, and document
the algorithm and design details of the subprogram.
This may include material common with mini-
specs, as the design reflects the requirements. In
particular, many of the mathematical equations are
referenced in both places.

Figure 2: Example Structure Chart

Consistency Between Products. Experience at
AECL has shown that lack of consistency between
software products has been a major source of soft-
ware defects [7].

Commercial CASE tools have helped to reduce
this inconsistency, but these tools all have difficulty
in one or more critical areas:

• Lack of support for scientific and mathematical
notations. The nature of scientific software
demands that mathematical notations (e.g.,
Ai (t) =

∫ t

0

[
F IN

i (τ)
]
dτ) be permitted in

specifications.

• Insufficient accountability. The principle of
ownership and accountability for products is
not strictly enforced. While a record of who
updated products is often kept, the process
control is typically inadequate.

• Assembling large products from smaller com-
ponents is not adequately supported. Many
defects originate as transcription errors between
products. Mathematical equations are particu-
larly susceptible.

• Insufficient consistency checking between prod-
ucts.

198 TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting

The TEXspecTool for Computer Aided Software Engineering

The TEXspec Solution

TEXspec takes advantage of the plain text nature
of LATEX input to permit processing and tracking of
shared components. The main TEXspec processing
is performed by modules which have been imple-
mented in Perl [10], as indicated in figure 3. A
graphical user interface (GUI) captures interactions
with the user. Most of this interaction consists
of displaying and manipulating ‘component’ files,
which form the inputs for the TEXspec scripts that
select components and assemble them into products.
These products are primarily LATEX or Noweb [8]
input files, which can be post-processed to produce
output suitable for viewing, printing, or compiling.

Figure 3: TEXspec Architecture

While the GUI is a convenient way to con-
struct components and initiate processing, it can
be bypassed if required. The components can be
generated by any means that can generate an plain
text output file, including a text editor. More im-
portantly, the processing can be controlled by any
means that can initiate a process, with no require-
ment for interaction with a GUI. When processing
many components, or when a log of processing is
required, this ‘batch’ style processing is a useful
alternative.

Neither the TEXspec scripts, nor the GUI can
display or print the products. Figure 3 indicates
that an intermediate script, which is intended to
be edited by the user, initiates TEXspec to produce
the product files, then controls post-processing as

appropriate. This flexibility allows the user to
integrate TEXspec into existing procedures. For
example, if a static code analyzer such as Floppy [1]
is in use, it can be run automatically on code as
it is generated. Interaction with a version control
system might be desired, or the user may even wish
to compile code as it is generated. Alternatively,
processing that is not needed can be removed, such
as removing documentation generation (including
LATEX processing) until the code is stable.

In order to support sharing of equations and
data definitions, while tracking ownership and re-
sponsibility for content, TEXspec supports a fine
granularity of components. Each TEXspec compo-
nent is tracked independently by placing each in a
unique file which is mapped by the file name to
the name of the component, and by the file name
‘extension’ (in the tradition of MS-DOS or CP/M)
to the type of component.

TEXspec components, with associated file name
extensions, are:

• Requirements Data Dictionary entries (.rdd),
• Design Data Dictionary entries (.ddd),
• Equations (.teq),
• Data Flow Diagrams (.dfd),
• Mini-Specs (.ms),
• Structure Charts (.sc),
• Subprogram Design Descriptions (.ds), and
• Manuals (.tex).

Data Flow Diagrams. DFDs such as figure 4 are
produced using the xy-pic package [9] under LATEX.

TEXspec shows the details of composite data
flow decomposition explicitly on the DFD. In fig-
ure 4, for example, flow ‘conc-majoranions’ (which
would appear on Diagram 1.4.3) is shown as con-
stituent components ‘CCL’ and ‘CSUL’. If a com-
posite flow contains components which do not ap-
pear on the current diagram, they are shown in a
regular font, while components that do appear on
the current diagram are shown in a bold font.

Consistency between DFDs is monitored by
TEXspec. A warning messages is generated for any
inconsistency between a DFD and it’s parent.

Labels can be shown with mathematical nota-
tion, rather than the plain text shown. Switching
from plain text to mathematical labels is simple,
since flows are taken from the requirements data
dictionary (file name.rdd), which typically con-
tains both a mathematical and a plain text label.
Although this is an interesting capability, there has

TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting 199

Stephen E. Oliver

Figure 4: TEXspec Data Flow Diagram (DFD)

been little enthusiasm among users to take advan-
tage of it.

The format of the header in figure 4 is common
to all TEXspec products, detailing the project,
the responsible author, implementer, and reviewer,
along with an indication of the genealogy of the
product (in very small type), which can be used to
trace back the source of any defects.

Mini-Specs. Atomic processes are not broken
down into lower level DFDs, but are further specified
using a mini-spec. This document is intended to be
flexible in format, permitting the author freedom to
communicate the intent of the process in whatever
manner is most effective.

The standard TEXspec header is generated for
each mini-spec, as shown in figure 5. The author
must explicitly state input and output flows, which
are presented in tabular format and verified for
consistency with the DFD.

Equations appearing in mini-specs are often
referenced in other documents. Authors are en-
couraged, but not required, to place each equation
in a separate file (name.rdd), and reference that
file from within the mini-spec. The equation can
then be reused in subprogram design descriptions
or manuals. At AECL, a commercial package is
used to create equations that can be saved in LATEX
format which includes information encoded as LATEX
comments which permits reuse by word processors.

Figure 5: TEXspec Mini-Spec (MS)

By keeping an equation in a single file, available for
reuse, transcription errors are reduced.

Structure Charts. TEXspec structure charts such
as figure 6 are produced using the xy-pic package [9]
under LATEX. Subprograms can be grouped using

Figure 6: TEXspec Structure Chart

colour coded backgrounds. In figure 6, subprograms

200 TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting

The TEXspecTool for Computer Aided Software Engineering

‘SOURCE’, ‘ZAPINT’, and ‘REPFUN’ are grouped
with a yellow background indicating that they are
library routines, not part of the software being
documented.

Input and output variables are also colour
coded: green for input, red for output, and blue
for both. This applies to both the arguments to a
subprogram and to the common storage variables.

FORTRAN groups common storage variables
into named blocks, which are indicated to the left
of each variable name. Blocks are sorted alphabeti-
cally, and variables are sorted alphabetically within
a block.

For subprograms that are functions, rather
than subroutines, an additional output variable is
provided in the name of the subprogram itself. In
this case the name of the subprogram appears in
red.

Most of the information on the structure chart
is extracted from the subprogram design description
(subprogram.ds) file for each subprogram on the
chart. Presentation details are contained in a
structure chart file (name.sc). The structure chart
file lists the subprograms to be placed at specified
locations. It also indicates the calling relationship
between the subprograms and the location of the
connecting lines. TEXspec generates a warning
message if the specified calling relationship is not
consistent with the FORTRAN code.

The description of the subprogram, and the
argument list, are extracted from the subprogram
design description file, and can be quite long. The
structure chart may specify a maximum line length
for these elements, and TEXspec inserts line breaks
appropriately.

The double box ‘INVTRY’ at the bottom of
figure 6 is an off-page connector to another structure
chart. This chart is referenced by an off-page
connector ‘SIMALL’ on another chart.

Subprogram Design Descriptions. TEXspec
supports literate programming techniques [4] via
use of the Noweb [8] package. Some preprocessing
and postprocessing is required to achieve the desired
products, but Noweb users will be immediately fa-
miliar with the format.

Subprogram design descriptions can be long
documents, but an abrieviated product is shown
in figure 7. The TEXspec header is followed by a
Noweb-style list of code blocks that comprise the
subprogram.

Code blocks to declare variables are replaced
by a tabular form which contains additional data
dictionary information. Of particular interest is

the ‘Symbol’, which is the mathematical notation
for a variable. This allows variables to be traced
through equations, making the relationship between
code and requirements much easier to follow. Also
specified is the input/output status of each variable,
which TEXspec validates against the contents of the
code blocks.

Several tables may be generated. One each
for subprogram calling arguments, common storage
variables, local storage variables, and constants. Af-
ter each table, the design may optionally specify pre-
conditions and postconditions for the tabulated vari-
ables. Specifying valid ranges for data has proven to
make testing much more accurate, and the process of
specifying those ranges has identified many defects.
Specifying preconditions and postconditions early in
the design process is an effective and inexpensive
quality control device.

Following the tables are the code blocks, each
including commentary in LATEX format which may
feature equations shared with mini-specs or other
documents. Sharing equations ensures consistency.
Consistency between subprogram design descrip-
tions and compilable code is guaranteed, since
Noweb extracts the code from the subprogram de-
sign description. Information for each subprogram
on a structure chart is also extracted from the sub-
program design description, ensuring that all design
documentation is consistent.

Data Dictionaries. TEXspec distinguishes be-
tween dictionary entries for requirements and de-
sign specification. Some design information is never
applicable to requirements (e.g., a common storage
block name).

It is possible to have a close correlation between
entries in the requirements and design dictionaries.
Design entries may optionally state a requirements
dictionary entry which is related. When this is done,
fields in the design dictionary acquire default values
equivalent to the requirements data dictionary. This
is particularly useful to inherit the mathematical
symbol and description.

TEXspec produces a data dictionary listing
which can show a cross reference of which products
use which dictionary entries.

Graphical User Interface. There is a consider-
able amount of data contained in many plain text
files in a typical TEXspec documented project. To
assist users, a GUI has been developed as a Java
application to act as a front end to the process.
While there is little new technology embeded in the
GUI, it is interesting to note that the GUI, at over

TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting 201

Stephen E. Oliver

Figure 7: A portion of a TEXspec Subprogram
Design Description

20,000 lines of code, is much larger that the TEXspec
scripts.

An example screen is shown in figure 8. Here,
the structure chart ‘SIMALL’ from figure 6 is being
edited in the upper window. A subprogram on the
chart is being modified in the lower window. The
GUI can open many windows, so it is contained
within an application desktop, which produces only
one icon on the user’s desktop.

When editing a subprogram (module) on a
structure chart, the user specifies the subprogram

Figure 8: TEXspec GUI editing a Structure Chart

name, and sets a position in x,y coordinates. If
the user wants to show an entry point on the
chart to this subprogram (useful for charts with
multiple entry points), then the location of the entry
point must be specified. The location of the call
string, and the maximum width of that string is also
entered. Calls to other subprograms can be added
from a dropdown list of all available modules. For
each called subprogram, ‘waypoints’ determine the
shape of the line connecting the two boxes.

Similar editing capability is provided for the
overall structure chart in the upper window. Select-
ing a subprogram from the scroll list at the bottom
of the upper window causes the lower window to
appear.

Future Development

The next stage of TEXspec development will be to
add some object oriented programming extensions,
and a rudimentary interface between the GUI and

202 TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting

The TEXspecTool for Computer Aided Software Engineering

an Integrated Development Environment (IDE) to
assist in debugging and performance analysis.

The plain text files that store TEXspec data
are formatted to be human readable and editable.
This allowed TEXspec to be used before the GUI was
developed. With the advent of a GUI to interface
with this data, the file format may be redefined to
an XML syntax.

The Perl scripts may be reimplemented in Java,
to permit a more seamless interface between the GUI
and the main application.

The application may be divided into a client
and a server. This would improve performance, as-
sist in sharing data between users and projects, and
provide more robust auditing and version tracking.
The system could allow installation of files into a
configuration management system. Dependencies
between files would be monitored by the server, and
ownership would be enforced.

A number of extensions may be made to the
GUI, including preview capability for mathematical
notations.

More diagram types and programming lan-
guages may be supported. In particular, object
oriented diagrams may be added, and the full
FORTRAN-9x, Java, or Perl syntax may be added.

The GUI support for the graphical products
(Data Flow Diagrams and Structure Charts) could
be based on editable graphics, or perhaps provide a
‘preview’ window. Having to process the file to see
the format of the output is not a optimal.

Some allowance for formal tracing between
design and requirements could be provided.

Conclusion

TEXspec provides a workable solution to computer
aided software engneering requirements that are
peculiar to scientific programs. It is a significant
quality assurance device for these programs.

TEXspec is in use on several projects relating
to modeling the disposal of Canada’s nuclear waste.
As such, it is a working tool, but is still in the early
phases of development. Further enhancement will
improve the capability of meeting quality assurance
requirements imposed by standards such as CSA
N286.7.

References

[1] J.J. Bunn. Floppy and flow user manual. 1997.

[2] B.W. Goodwin, T.H. Andres, D.C. Donahue,
W.C. Hajas, S.B. Keeling, C.I. Kitson, D.M.

LeNeveu, T.W. Melnyk, S.E. Oliver, J.G.
Szekely, A.G. Wikjord, K. Witzke, and L. Woj-
ciechowski. The disposal of Canada’s nuclear
fuel waste: A study of postclosure safety of in-
room emplacement of used candu fuel in copper
containers in permeable plutonic rock. Volume
5: Radiological assessment. Technical Report
AECL-11494-5,COG-95-552-5, Atomic Energy
of Canada Ltd, 1996.

[3] B.W. Goodwin, D.B. McConnell, T.H. Andres,
W.C. Hajas, D.M. LeNeveu, T.W. Melnyk,
G.R. Sherman, M.E. Stephens, J.G. Szekely,
P.C. Bera, C.M. Cosgrove, K.D. Dougan, S.B.
Keeling, C.I. Kitson, B.C. Kummen, S.E.
Oliver, K. Witzke, L. Wojciechowski, and A.G.
Wikjord. The disposal of canada’s nuclear fuel
waste: Postclosure assessment of a reference
system. Technical Report AECL-10717,COG-
93-7, Atomic Energy of Canada Ltd, 1994.

[4] D.E. Knuth. Literate Programming. Center for
the Study of Language and Information, 1992.

[5] D.M. LeNeveu. Analysis specifications for the
cc3 vault model. Technical Report AECL-
10970,COG-94-100, Atomic Energy of Canada
Ltd, 1994.

[6] Quality assurance of analytical, scientific, and
design computer programs for nuclear power
plants. Technical Report N286.7-99, Canadian
Standards Association, 178 Rexdale Blvd. Eto-
bicoke, Ontario, Canada M9W 1R3, 1999.

[7] S. Oliver, K. Dougan, K. Kersch, C. Kitson,
G. Sherman, and L. Wojciechowski. Unit test-
ing - a component of verification of scientific
modelling software. In T.I. Oren and G.B.
Birta, editors, 1995 Summer Computer Simu-
lation Conference, pages 978–983. The Society
for Computer Simulation, 1995.

[8] N. Ramsey. Literate programming simplified.
IEEE Software, September 1994.

[9] K. Rose. Very high level 2-dimensional graph-
ics. In 1997 TeX User Group Conference. TeX
User Group, 1997.

[10] L. Wall, T. Christiansen, and R. Schwartz.
Programming Perl. O’Reilly & Associates, 101
Morris Street, Sebastopol, CA 95472, second
edition, 1989.

[11] E. Yourdon. Modern Structured Analysis. Your-
don Press/Prentice-Hall, 1989.

TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting 203

	Problem Definition
	Software Development Methodology.
	Requirements Specification.
	Design Specification.
	Consistency Between Products.

	The TeXspec Solution
	Data Flow Diagrams.
	Mini-Specs.
	Structure Charts.
	Subprogram Design Descriptions.
	Data Dictionaries.
	Graphical User Interface.

	Future Development
	Conclusion

