L_YX — An Open Source Document Processor

Laura Elizabeth Jackson and Herbert Voß

Abstract

 L_YX — the so-called front-end to L_TEX , which is itself a front-end to T_EX — tries to optimize something that L_TEX doesn't attempt: to make a high quality layout system like (LA) T_EX accessible to users who are relatively uninterested in serious typographical questions. L_YX is not a word processor, but a document processor, because it takes care of many of the formatting details itself, details that the user need not be bothered with. All L_YX features described here apply to the current official version L_YX 1.1.6fix4. The significantly expanded version 1.2 is expected this summer.

1 History

Drawing on the principles of the traditional printed word, Donald Knuth¹ developed a system that enabled users to prepare professional technical publications. Knuth called the first version of this system $\tau \epsilon \chi$, which has since come to be written TEX and pronounced "tech".

A graphical user interface is in principle not essential for LATEX; however, in today's "all-thingsbright-and-beautiful" world, the absence of a GUI makes IATFX less accessible to the masses. This lack of a GUI was recognized in 1994/95 as the opportunity to create one; it began as a master's thesis and was first called Lyrik, then LyriX, and finally L_VX. From the beginning, the main goal so that the user would be freed from having to delve into the details of (IA)TFX usage. It remains to be seen whether (IA)TEX can be left completely out of the discussion, because all other program environments sit on top of TFX. To understand the LyX philosophy, however, understanding (LA)TFX is unimportant, especially for the user who specifically chose LyX for the distance it places between itself and (IA)TEX. In addition to LYX there are other GUIs, such as ε :doc² or T_EXMacs.³

2 WYSIWYG versus WYSIWYM

A buzzword of the 1990s in software development was WYSIWYG (What You See is What You Get), which enabled the user to exert quick control over a document. On the one hand this requirement presented considerable problems for the software

¹ http://www-cs-faculty.stanford.edu/~knuth/

² http://members.magnet.at/hfbuch/edoc/

³ http://www.texmacs.org/

Figure 1: The L_YX Main-GUI

developers. On the other hand, it was becoming clear that a substantial part of the layout of scientific and technical publications is concerned with for example german DIN-norms or publisher's defaults, and the author must be able to conform to these Therefore, in the development of requirements. L_YX it was decided to use the WYSIWYM principle (What You See is What You Mean); that is, what the user sees in the graphical interface bears only a global resemblance to the final output. The degree of resemblance depends on the complexity of the text, lying anywhere between $30\% \dots 95\%$. as demonstrated in figure 1. In order to avoid misunderstanding, we reiterate that WYSIWYM is a compromise; it does not promise to achieve the perfect combination of T_EX and WYSIWYG.

3 Why L_VX and not ???

There can be no convincing answer to this question without paying special attention to the typographical layout. For example, the formula mode in WinWord simply cannot be compared to the one in LAT_EX, as figures 2 and 3 demonstrate.

It is inserted as the PostScript-output of Win-Word's math editor with the use of the default font. The essential difference lies in these fonts that are used; one must dedicate a much greater amount of attention to font selection under LATEX than un-

$$A = \lim_{n \to \infty} \Delta x \left(a^2 + \left(a^2 + 2a\Delta x + (\Delta x)^2 \right) \right. \\ \left. + \left(a^2 + 2 \cdot 2a\Delta x + 2^2 (\Delta x)^2 \right) \right. \\ \left. + \left(a^2 + 2 \cdot 3a\Delta x + 3^2 (\Delta x)^2 \right) \right. \\ \left. + \left(a^2 + 2 \cdot (n-1)a\Delta x + (n-1)^2 (\Delta x)^2 \right) \right) \\ \left. = \frac{1}{3} \left(b^3 - a^3 \right) \right.$$

$$A = \lim_{n \to \infty} \Delta x \left(a^2 + \left(a^2 + 2a\Delta x + (\Delta x)^2 \right) \right)$$
$$+ \left(a^2 + 2 \cdot 2a\Delta x + 2^2 (\Delta x)^2 \right)$$
$$+ \left(a^2 + 2 \cdot 3a\Delta x + 3^2 (\Delta x)^2 \right)$$
$$+ \dots$$
$$+ \left(a^2 + 2 \cdot (n-1)a\Delta x + (n-1)^2 (\Delta x)^2 \right) \right)$$
$$= \frac{1}{3} \left(b^3 - a^3 \right)$$

Figure 3: WinWord formula mode

der Windows, with its well-known TrueType-Fonts. SUN's software package StarOffice⁴ is frequently recommended for use with Linux, since it is both free of charge and professionally built. In contrast to IaT_{EX} , StarOffice can serve as a true office package with word processing, spreadsheet, and database capabilities. IaT_{EX} , on the other hand, can do only one thing: document preparation. But it accomplishes this task better than any other software package.

Every word processor has its more or less known strengths and weaknesses, which we refrain from discussing here. The strengths of IATEX lie without a doubt in the realm of technical and scientific literature. Nowadays there are practically no barriers to the use of IATEX, thanks to the multitude of freely available software packages. The capability of a completely installed (IA)TEX-LYX package is in no way inferior to an installation of an office package, and furthermore, using IATEX-LYX results in great gains in speed when formatting large documents.

⁴ http://www.sun.com/products/staroffice/

TUGboat, Volume 22 (2001), No. 1/2

4 The LyX-Layout

Frequently, the largest problem for L_YX beginners is the realization that the layout shown in the L_YX window will not be identical to the final layout produced by LATEX. In following the philosophy, L_YX endeavors to achieve as many similarities to the final layout as possible. Each of the L_YX layout commands translates into one or more LATEX layout commands, but what appears in the L_YX window is merely a rough approximation of the final product. For example, for the paragraph layout option called **Title**, the associated L_YX commands are as follows:

LyX Title-Layout
Style litle
Margin Static
LatexType Command
InTitle 1
LatexName title
ParSkip 0.4
ItemSep 0
TopSep 0
BottomSep 1
ParSep 1
Align Center
AlignPossible Center
LabelType No_Label
standard font definition
Font
Family Sans
Series Bold
Size Largest
EndFont
End #title

The LATEX Name title produces the direct connection with LATEX, in that it determines what should happen with the text that is shown in the LyX window. It is also possible for the user to design a completely new layout; for example, the following LATEX code is generated from a user-defined paragraph layout with a gray background. Internally, the LyX layout command will be named myStandardColor, and it will correspond to the user-defined LATEX layout command cminipage.

#	Standard color-style definition
St	yle myStandardColor
	Margin Static
	LatexType Environment
	LatexName cminipage
	ParIndent MM
	ParSkip 0.4
	Align Block
	AlignPossible Block, Left, Right, Center
	LabelType No_Label
#	standard font definition
	Font
	color blue
	family typewriter
	EndFont
	Preamble

Figure 4: The L_YX-Layout Menu

```
\usepackage{color,calc}
\definecolor{myColor}{rgb}{0.9,0.9,0.9}% rgb
\newenvironment{cminipage}{%
[ .... ]
  \end{lrbox}%
  \fcolorbox{myColor}{myColor}%
     {\usebox{\@tempboxa}}%
}%
EndPreamble
End # myStandardColor
```

5 The Start

By today's standards, the $L_{Y}X$ graphical interface appears somewhat spartan, but it contains all the essential elements that are for the most part present in all text processors. The buttons of the main $L_{Y}X$ window can be modified to reflect the individual preferences of the user. Some additional icons are already provided in the standard system, and further ones may be created by the user and then made available to the $L_{Y}X$ community.

 L_YX has no formatting properties of its own, since it is built entirely on top of IATEX. L_YX can therefore only begin its work after a IATEX document class has been chosen. The number of these classes is limited because they define only the most basic formatting properties. Some of the document classes supported from L_YX are as follows:

- article
 - standard, amsart,⁵ cv, docbook (SGML), dtk,⁶ egs,⁷ ejour2,⁸ elsart,⁹ exam, Hebrew, IEEEtran, llncs,¹⁰ Komascript, revtex, siamltex, ltugboat
- book
 - standard, amsart, docbook (SGML), Komascript
- report
 - standard, Broadway,¹¹ Komascript
- letter
 - standard, (g-Brief) english/french/ german, Komascript
- seminar
- slide
- APA style (American Psychological Association)
- CD-Box Cover

The default document class in L_YX is article. The user is also free to design completely new L_YX-Layouts, taking advantage of the fact that L_YX is an open system. Many universities have created their own classes for theses and dissertations.¹² In order to make a new LATEX document class available for L_YX, a corresponding L_YX layout must first be created.

6 Text parameters

As with every document preparation system, there are also some globally effective parameters in LATEX applications. These can be set in the document GUI (figure 5), which holds a lot of different parameters.

7 The Formula Generator

We have already mentioned the outstanding capability of T_EX to produce mathematical formulas. LyX supports this capability in a graphical mode which almost achieves WYSIWYG quality, as seen in figure 6, which is the screenshot of the following equa-

Figure 5: The Document GUI

Figure 6: L_YX in Mathmode

tion:

$$a = \arg(z) = \begin{cases} 0 & (a < 0 \land b = 0) \\ \pi & (a < 0 \land b = 0) \\ \arctan \frac{Im(z)}{Re(z)} & (a \in \Re \land b > 0) \\ \arctan \frac{Im(z)}{Re(z)} & (a \in \Re \land b < 0) \end{cases}$$

In contrast to the relatively easy-to-use math editor in WinWord, there exists in IATEX considerably more possibilities for vertical and horizontal positioning. The WinWord math editor, though, has more menu choices than the L_YX math panel, shown in figure 7.

- 10 🕂	- CI	lose 🕂	Functio	ns
(D) T			arccos arcsin arctan	Alun
Γρεεκ	±×	≤≅	arg bmod	
↑⇔	Σſ	Misc	cosh	

Figure 7: L_YX Math-Panel

⁵ American Mathematical Society

 $^{^{6}}$ The journal of the German TEX Users Group

 $^{^7}$ European Geophysical Society

 $^{^{8}}$ Journal of Geodesy

⁹ Elsevier Journal

¹⁰ Lecture Notes in Computer Science (Springer)

¹¹ Special class for writers

 $^{^{12}}$ Especially in the United States

8 Floats

Figures and tables can be integrated into so-called fl logically arrange on the page. In addition to the stantables, there is also a predefined type of float for an restricted to the existing types of floats but may instead there is a corresponding *Listof* command (Figure Ref: floats of that type, at whatever location in the documen float:figure

Figure 8: Figure-Float in a collapsed state

The American Mathematical Society's *ams-math*-package offers extensive functions within the context of mathematical formulas, which the upcoming version of $L_{Y}X$ will support.¹³

8 Floats

Figures and tables can be integrated into so-called floating objects, or floats, that T_{EX} can logically arrange on the page. In addition to the standard types of floats such as figures and tables, there is also a predefined type of float for an algorithm. In the LYX-Layout they appear in an open or collapsed layout (figure 8).

Of course, the user is not restricted to the existing types of floats but may instead create new ones. For all types of floats there are corresponding *Listof* commands (figure 9), each of which will produce a list of all floats of that type, at whatever location in the document the command is issued.

a 102	••	Bih	TeX	Gener	ated	Referer	rres	
			I	ist of	Fig	ures		
			ī	L ist of	f Ta	bles		
				L ist of	t Ta	bles		

Figure 9: Inserting List of Figures and List of Tables

9 Figures and Tables

Normally figures and tables are contained within floating objects, since their positioning is essential to the layout of the document. However, it is also possible to insert them directly into the text. All graphical objects must be in either PostScript (.ps) or encapsulated PostScript (.eps) format. L_VX

Figure 10: Menu to insert References

supports some graphic conversion via an external program like *convert* from the *imagemagic* package. Version 1.2 will have much better support for the graphics import.

10 Cross-References

IATEX provides several ways to include cross-references to a different location in a document, but since these methods are similar to those found in other document preparation packages, we mention them only briefly. The IATEX package *hyperref* supports creating cross-references as a link into a pdf-file. This type of cross-reference must be placed in the IATEX preamble (see section 17), since the current version of L_YX only supports the *prettyref* package. A cross-reference using the *prettyref* package is created by selecting the type of reference from a menu of available references, as shown in figure 10. The upcoming L_YX version 1.2 should contain a complete integration of the *hyperref* package.

A cross-reference must refer to a label that has been entered at some point in the document. The user can insert a label at any point in the document and choose any text for the name of the label. In a long document, the number of labels could easily exceed 100 or more; in this case, L_YX provides a nice feature: it automatically adds the type of the cross-reference (for example, "sec" for section like sec:minipages) before the cross-reference in the text. L_YX can display the labels in order of their appearance in the text or in alphabetical order.

11 Minipages

Within IATEX, minipages are essential for handling difficult layout issues and are therefore also supported directly within LYX.

¹³ See also http://www.perce.de/lyx/Equations.pdf

	Paragraph Layo	put
General Extra		
Extra Options Indented Paragraph Minipage Eloatfit HFill between Minipage Start new Minipage	Length gr % 40	Alignment
<u>R</u> estore	ок 📲	Apply Close

Figure 11: Paragraph layout for Minipages

	> mining ca
Accepting (2)(B) y loot way of example, this text will now appear twice, side-by-side in two minipages loot. A width of 45% has been chosen for the left minipage, 40% for the right minipage. A minipage can have displayed math formulas: e^{i} $f(n) = \prod_{i=1}^{n-1} e^{-iq}$ (#) And footnotes are also possible.	$\frac{\text{dropping}(2)(B)}{\text{prove way}}$ example, this text will no appear twice, side-by-side in twinipages fool. A width of 44 has been chosen for the leminipage, 40% for the rigminipage. A minipage can had displayed math formulas: φ $f(n) = \prod_{i=1}^{n-1} e^{-iq} (\#)$ And footnotes are also possible.

Figure 12: Minipages in the upcoming version 1.2

A minipage is set up using the menu found in Layout \triangleright Paragraph format \triangleright Extras, which is being changed for L_YX version 1.2 to make certain options for minipages more straightforward and give L_YX more support (figure 12). Figure 11 shows this menu as it appears in the current version of L_YX.

12 Multi-Part Documents

When writing a book, there is a danger of losing the overview of the work, especially when more than a hundred pages must be organized. For this situation L_{YX} offers the ability to break a long unwieldy work into separate, more manageable documents.

The structure of the main document might look like that shown in figure 13. It contains only the details of the chapters and sections (e.g., table of contents or index) that are to be inserted, as well as information about the manner in which the pages are to be numbered. It is not necessary for the main document to contain any text whatsoever.

L_YX automatically opens all the required subdocuments, if they are not yet open, whenever the

LyX: ~1/Aufsatz/chaos/chaos-kap0.lyx							
<u>Eile Edit Toc R</u> efs Layout Insert M <u>a</u> th <u>O</u> ptions <u>D</u> ocuments <u>H</u> elp							
Standard 🕹 🗗 🔛 🗁 🏕 階 😫 🛊 Font 🗔 패 🖅 💌 👷 😐							
A frontmatter							
Include: chaos_tital try							
Table of Contents							
rable of Comenta							
Include: chaos-vorwort.lyx							
\mainmatter							
Include: chaos-kap1.lyx							
Include: chaos-kap2.lyx							
Include: chaos-kap3.lyx							
Include: chaos-kap4.lyx							
Include: chaos-kap5.lyx							
Include: chaos-kap6.lyx							
Include: chaos-kap7.1yx							
Include: chaos-kap8.lyx							
Include: chaos-kap9.lyx							
Include: chaos-kap10.lyx							
Include: chaos-kap11.lyx							
Include: chaos-kap12.lyx							
Include: chaos-kap13.lyx							
Include: chaos-kan14.lvx							
Include: chaos-anhang.lyx							
BibTeX Generated References							
Vhackmatter							
Inter							
hinex.							
LyX: ~/texte/Aufsatz/chaos/chaos-kap0.lyx							

Figure 13: The main structure of a multipart document

main document is first translated (e.g., to create a pdf, PostScript, or dvi file) or when one subdocument attempts to cross-reference a location in another sub-document. LyX creates a common list of all labels from the various sub-documents to facilitate cross-references between the sub-documents.

13 Bibliography

LYX supervises the entire process of creating a bibliography: it runs the BIBTEX program when it is needed, without bothering the user with the details. The insertion of a literature citation is done by making a selection from a menu containing all the entries in the bibliographical database (figure 14), or by typing the keyword for this entry. The upcoming 1.2 version of LYX will give full *natbib*-support.

There are also several programs which make the maintaining of the database easier. In L_YX, then, one only needs to choose from the database the correct entry from which L_YX should make the citation. It is also possible to work with a separate citation-database program that supports input/output redirection ("piping"); Pybliographer,

Citati	on
Inset keys Kopka00 KI2000	Bibliography keys BMWT99 CAST:97 KI2000 Kopka00 NIEa Osvik:2000 RC6:99 RSA:1978 RSA:1978 RSA:1978 RSA:1998 Rijndael:1999 This file has been generated ✓
Author = {Ki\"ockl, Ingo}, Title = {LaTeX2e{}: {Tjips und {T Publisher = {dpunkt Verlag}, Series = {Heidelberg}, year = 2000, Text after)ncks),
. <u>R</u> estore	Apply Cancel

Figure 14: The citation-menu

for example, is such a program. "Piping" enables the program to directly insert a citation into the text through the so-called L_YX server. This capability is found in several current BIBTEX programs, such as TKBIBTEX¹⁴ and Sixpack.¹⁵ Instead of using an external literature database, it is also possible to work with the bibliography facility that is directly supported within L_YX. The citation keys must be entered within the document that is currently being edited, as shown in figure 15.

However, this procedure is not recommended, because these citations cannot be reused in the straightforward way that a database can be reused. Such citations can only be inserted into other documents using the "cut-and-paste" method, which requires that the user always have the name of the old document handy.

14 Spellcheck

Since LYX doesn't include its own spellchecker, the user is free to employ any spellchecker that is started from the command line, such as the ispell program. The operation of the spellchecker is illustrated in figure 16; since there is nothing novel about LYX's use of the spellchecker, we will not go into further detail.

Figure 15: The use of the bibliography layout

	Spelichecker	
	densitive	Start spellchecking
Replace	densitive	insert in personal dictionary
	sensitive -	Accept word in this session
blook	-	Ignore word
Misses		<u>R</u> eplace word
		Stop spellchecking
		Spellchecker Options
6	100 %	<u>C</u> lose Spelichecker

Figure 16: Running the Spellchecker

15 Preview and Printing

The print preview process takes place completely outside of the LyX system, as well as outside the realm of LATEX and TEX. LATEX produces a data file in the dvi format, and the xdvi viewer can then be used to preview the document. One drawback of this process, however, is that if a document contains many errors, LATEX will be unable to produce a dvi file at all, which in turn makes it more difficult for the user to locate the errors. As an alternative to the dvi output, LyX can also create a Post-Script file which can be viewed with the *ghostview* program. This avenue is especially recommended for documents containing special effects such as colors or rotated figures and tables, since the dvi-viewer lacks the capability to display such things. If the option of printing to a file is chosen, then an external shell script can subsequently be used on the file to create a two-sided DIN-A5 output for a book.

¹⁴ http://www.cat.csiro.au/cmst/staff/pic/tkbibtex.
html

 $^{^{15}}$ http://www.santafe.edu/~dirk/sixpack/

Figure 17: Supported Import/Export formats

16 Importing and Exporting

L_YX supports many import and export methods directly from the Files ▷ Import/Export menu, allowing the corresponding external program to be selected by the user. This is especially important for converting a document to HTML, since the programs for doing so differ greatly. Even though L_YX has its own file format, it is currently not recognized by any known applications; therefore conversion from L_YX to another format is possible only by first converting a L_YX file to a T_EX file. For this reason, in the list of predefined conversions shown in figure 17, which can be found under Edit ▷ Preferences ▷ Converter, L_YX doesn't appear on the left-hand side of any of the conversion options.

Frequently, the conversion of a L_YX document to PDF format is required. This conversion can be achieved using either the ps2pdf program or with the pdftex program; both possibilities exist within L_YX. A frequently asked question is whether the capability exists to convert to and from Microsoft Word. There is no simple solution to this problem; in extreme cases, such as when complex formulas and extensive tables are present, the RTF format must be used. However, simple text can be successfully converted, both from RTF to T_EX, and vice versa. L_YX supports the *wvware* program, if it is installed.¹⁶ The subsequent transfer from T_{EX} to L_{YX} can be accomplished through the reL_{YX} import option.

LYX offers direct support of chess diagrams, bitmap graphics such as GIF, JPEG, and xfig files, which are converted with *convert* in the eps-format. In particular, the documentation of chess matches is greatly simplified.

17 The LATEX Preamble

The LATEX preamble is an integral part of every TEX file, although in theory it may be left empty if no modifications to the standard document class are desired. For LYX documents, though, at the very least the preamble contains the command describing how LYX should be printed, so that it doesn't appear as LYX. LYX itself tries to manage the preamble itself, so that the user puts only very special commands in the visible part of the preamble.

In principle the preamble is nothing more than a simple editor window in which the necessary additional packages are specified, those which aren't automatically loaded by L_YX itself. The use of these simple editing functions is not one of L_YX 's strong points, but instead are vestiges of the past that must be lived with. One could even use the \input command to read in the entire preamble as an external file, and employ an external editor to modify it. A text with a complicated layout routinely will have a complicated preamble as a result.

18 Error Analysis

LYX runs LATEX always in batchmode and tries its best to locate any errors that are generated during this process, marking them with an error flag in the spot in the document where they occur. Clicking on the error flag will generate a window (shown in figure 18) detailing the condition that caused the error, enabling the user to analyze and then eliminate the problem. These LATEX error messages are sometimes very general, so that LYX has problems locating the error and it can only do its best.

¹⁶ http://www.wvware.com

Figure 18: Error message

A IATEX run is similar to the compilation of source code in a programming language; a single error in the code may result in a very large number of error messages. In longer documents, the number of errors can easily reach one hundred or more.

19 Navigation

Navigating within an extensive document can be a challenge, so L_YX offers help in the form of a document-specific menu. This menu contains the names of all section and subsections, as well as tables and figures, enabling the user to jump to any point in the text with relative ease. Figure 19 shows all sections and all figures of this text, which are all like internal links, so that jumping to any place in the text is easy.

Another navigational tool exists under $Edit \triangleright$ Find and Replace, which operates in the same manner as in other text editors. In the current version of $L_{Y}X$, the "Find and Replace" utility works only on text that appears on the screen; unfortunately it does not "find and replace" command sequences.

20 Documentation

A large problem with open source projects is always the documentation and help, which operate within mailing lists. The volunteers who maintain the documentation are frequently unable to keep up with the frantic pace of the developers, so that the documentation lags behind the currently available version. Furthermore, users will often skip the documentation altogether, preferring instead to send a question directly to the mailing list, a question that most likely has already been asked and answered many times over. Under the L_YX menu option Help there is a selection of help documents that are themselves L_YX files, which may easily be printed. Although the help files cover a considerable amount of material, they suffer from a somewhat uninspired

1	V
Figure	1. The LyX Main-GUI
<u>1</u> History	2. LyX formula mode
<u>2</u> versus	3. WinWord formula mode
3 Why LyX and not ???	4. The LyX-Layout Menu
4 The LyX-Layout	5. The Document GUI
<u>5</u> Tho Start	6. LyX in Mathmode
6 Text parameters	7. LyX Math-Panel
7 The Formula Generator	8. Figure-Float in a collapsed state
<u>ô</u> Fluals	9. Inserting List of Figures and List of T
9 Figures and Tables	10. Menu to insert References
10 Cross-References	11. Paragraphlayout for Minipages
11 Minipages	12. Minipages in the upcoming version 1.2
12 Multi-Part Documents	13. The main doc of a multipart document
13 Bibliography	14. The citation-menu
14 Spellcheck	15. The use cf the bibliography layout
15 Preview and Printing	16. Running the Spellchecker
16 Importing and Exporting	17. Supported Import/Export formats
17 The LaTeX Preamble	18. Errormessage
18 Error Analysis	19. Navigation in LyX-Sourcefile
19 Navigation	20. LyX and the use of the matheditor
20 Documentation	21. LyX and the use of Unicode
21 Examples	
22 LyX Sources	
23 The LyX Community	
Error C-g	
Note	
<u>R</u> efs	
Bookmarks	

Figure 19: Navigation in a L_YX-Sourcefile

organization; for this reason users frequently have problems finding the answer to a question.

The current version of L_{YX} (1.1.6) contains substantial differences from previous versions, yet in a few places the documentation still needs to be brought up to date. This task is being put on hold for the time being, though, while most of the documentation effort is going towards the preparation of upcoming version 1.2.

21 Examples

Now that we have completed our whirlwind tour through the basic features of L_YX, we present a few examples that will demonstrate the merits of using a typesetting system like T_EX in conjunction with a document processor like L_YX. The first example (figure 20) shows the extensive use of L_YX's nearly WYSIWYG-Matheditor.

The next example (figure 21) shows the use of Unicode for Hebrew, Arabic and Russian. L_YX also supports Right-To-Left-written languages; however, for some special issues, like search and replace, there are restrictions. More Information about this special topic of L_YX is available at http://www.math.tau. ac.il/~dekelts/lyx/.

Figure 20: L_VX and the use of the matheditor

Figure 21: L_YX and the use of Unicode

22 L_VX Sources

The web site http://www.lyx.org contains all the essential information for installing L_YX on all current operating systems. For OS/2 and Windows machines, an X-server is also needed. All systems must have a fully installed T_EX system, which can be freely downloaded from http://www.ctan.org or any mirror. Further download sources can be found at http://www.lyx.org/help/, in particular for special versions of L_YX, like the one for Solaris or Debian.

23 The L_YX Community

As an open-source project, L_YX must rely on the intensive collaborative efforts of users who are in constant communication about the implementation and development of L_YX. The L_YX homepage, as mentioned before, is at http://www.lyx.org. In addition, there are mailing lists for:

- Users: lyx-users@lists.lyx.org (medium volume)
- Developers: lyx-devel@lists.lyx.org (medium to high volume)
- Documentation team: lyx-doc@lists.lyx.org (low volume)

Directions on how to register for one of these mailing lists can be found on the L_YX homepage. An extensive website with tips and tricks for L_YX is located at http://www.lyx.org/help/. For all mailing lists there are online archives located at http://www.mail-archive.com/lyx-??? @lists.lyx.org/, where "???" should be substituted with "devel", "user", or "doc".

A mid-term goal of L_YX development is for L_YX to have the capability to run in every possible GUI environment. A recurring theme is also the integration of more L^AT_EX packages, so that the user is spared having to know about the inner workings of L^AT_EX .

- ◊ Laura Elizabeth Jackson Raleigh, North Carolina (USA) lejacks2@unity.ncsu.edu
- ♦ Herbert Voß Berlin (Germany) voss@lyx.org