
TUGboat, Volume 20 (1999), No. 4 367

Hints & Tricks

“Hey — it works!”

Jeremy Gibbons

Welcome again to “Hey — it works!”, a column
devoted to (LA)TEX and META tips and tricks. This
issue is devoted to a single topic, a sequel to an
earlier article on creating ornamental rules: we show
how to construct ornamental boxes out of individual
symbols.
Please note that I have moved. My new contact

details are given at the end of this article. Unfor-
tunately, mail is not being forwarded from my old
address; I apologize profusely for any inconvenience



368 TUGboat, Volume 20 (1999), No. 4

that this may have caused. This column is be-
ing archived at http://users.comlab.ox.ac.uk/
jeremy.gibbons/hiw/.

Ornamental boxes

In this column in TUGboat 19:4, Christina Thiele
showed how to produce ornamental rules con-
structed from ordinary characters:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗
It is also fun to generate ornamental boxes out of
ordinary characters:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
shake the yoke of
inauspicious stars

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
This article shows how. We start off with a simple
macro, and elaborate on it in stages.

First attempt: a single symbol

Our first attempt constructs an ornamental box out
of copies of a single symbol, as in the example above.
The macro \boxitA takes two arguments: the con-
tents to be boxed, and the symbol (in fact, any
horizontal material) that will be used to surround
it. The first step is shift these two boxes vertically,
if necessary, so that they have zero depth.
\def\boxitA#1#2{{%

\setbox0=\hbox{#1}% the box contents

\setbox0=\hbox{\raise\dp0\box0}%

\setbox1=\hbox{#2}% the ornament

\setbox1=\hbox{\raise\dp1\box1}%

Unfortunately, Christina’s elegant use of leaders
doesn’t work as well for boxes as it does for rules; we
have to achieve the same effects manually. We com-
pute precisely how many instances of the symbol are
required, horizontally and vertically, to exceed the
dimensions of the contents; call these two numbers
m and n. Each number is the size of the contents
divided by the size of the symbol, rounded up to the
nearest integer; we round upwards by first adding
the size of the ornament less one.

\count0=\wd0 \advance\count0 by \wd1

\advance\count0 by -1 \divide\count0 by \wd1

\count1=\ht0 \advance\count1 by \ht1

\advance\count1 by -1 \divide\count1 by \ht1

The dimensions of the contents may not be exact
multiples of the size of the symbol, so we wrap the
contents in the smallest enclosing box with such
dimensions:

\setbox0=\hbox to \count0\wd1{%

\hfil\vbox to\count1\ht1{%

\vfil\box0\vfil}\hfil}%

Finally, we construct the ornamental box, withm+2
instances of the symbol at the top and bottom, and
n+ 2 instances at the left and right:

\hbox{\vbox{\offinterlineskip

\hbox{\copy1%

\duplicate{\count0}{\copy1}%

\copy1}

\hbox{\vbox{\duplicate{\count1}{\copy1}}%

\copy0%

\vbox{\duplicate{\count1}{\copy1}}}

\hbox{\copy1%

\duplicate{\count0}{\copy1}%

\copy1}

}}%

}}

Here, the macro \duplicate generates a given
number (its first argument) of copies of a given text
(its second argument):

\def\duplicate#1#2{{% #1 copies of #2

\count2=#1%

\loop

#2%

\advance\count2 by -1

\ifnum \count2>0 \repeat}}

For example, the box at the start of this article was
generated by the code

\boxitA{\begin{tabular}{c}

shake the yoke of \\

inauspicious stars

\end{tabular}}

{$\ast$}

Second attempt: multiple symbols

The first attempt gave the general idea; however, it
would be nice to be able to use different symbols for
the four edges and the four corners. In this second
attempt, we provide such a facility. However, for
simplicity we assume that all eight symbols are the
same size. For example:

↘ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↙
→
→
→

bring me my
arrows of desire

←
←
←

↗ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↖
As before, we start by making the contents and

all eight of the symbols sit on the baseline:
\def\boxitB#1#2#3#4#5#6#7#8#9{{%

% contents TL T TR L R BL B BR

\setbox0=\hbox{#1}% the box contents

\setbox0=\hbox{\raise\dp0\box0}%

\setbox1=\hbox{#2}% #2 to #9 the ornaments

\setbox1=\hbox{\raise\dp1\box1}%

\setbox2=\hbox{#3}%

\setbox2=\hbox{\raise\dp2\box2}%

\setbox3=\hbox{#4}%

\setbox3=\hbox{\raise\dp3\box3}%

\setbox4=\hbox{#5}%

\setbox4=\hbox{\raise\dp4\box4}%

\setbox5=\hbox{#6}%

\setbox5=\hbox{\raise\dp5\box5}%

\setbox6=\hbox{#7}%



TUGboat, Volume 20 (1999), No. 4 369

\setbox6=\hbox{\raise\dp6\box6}%

\setbox7=\hbox{#8}%

\setbox7=\hbox{\raise\dp7\box7}%

\setbox8=\hbox{#9}%

\setbox8=\hbox{\raise\dp8\box8}%

(It would be nice to do this with a loop, but
unfortunately you cannot use a counter to access
a macro parameter.) Then we compute the number
of symbols required, horizontally and vertically, and
pad the contents accordingly:

\count0 = \wd0 \advance\count0 by \wd1

\advance\count0 by -1 \divide\count0 by \wd1

\count1 = \ht0 \advance\count1 by \ht1

\advance\count1 by -1 \divide\count1 by \ht1

\setbox0=\hbox to \count0\wd1{%

\hfil\vbox to\count1\ht1{%

\vfil\box0\vfil}\hfil}%

Finally, we construct the ornamental box, taking
care to use the correct symbol for each position:

\hbox{\vbox{\offinterlineskip

\hbox{\copy1%

\duplicate{\count0}{\copy2}%

\copy3}

\hbox{\vbox{\duplicate{\count1}{\copy4}}%

\copy0%

\vbox{\duplicate{\count1}{\copy5}}}

\hbox{\copy6%

\duplicate{\count0}{\copy7}%

\copy8}

}}%

}}

In order to use this macro, we need a means
of making all eight symbols the same size. The
macro \resizeW solves this problem: it yields its
first argument, but centred in the width of its second
argument. (Fortunately, all eight arrows are the
same height, so no vertical adjustment is necessary.)
\def\resizeW#1#2{{% #1, but to width of #2

\setbox0=\hbox{#2}%

\rlap{\hbox to \wd0{\hfil#1\hfil}}%

\phantom{\box0}%

}}

Then the box constructed out of eight arrows can
be generated by
\boxitB{\itshape

\begin{tabular}{c}

bring me my \\

arrows of desire

\end{tabular}}%

{\resizeW{$\searrow$} {$\searrow$}}

{\resizeW{$\downarrow$} {$\searrow$}}

{\resizeW{$\swarrow$} {$\searrow$}}

{\resizeW{$\rightarrow$}{$\searrow$}}

{\resizeW{$\leftarrow$} {$\searrow$}}

{\resizeW{$\nearrow$} {$\searrow$}}

{\resizeW{$\uparrow$} {$\searrow$}}

{\resizeW{$\nwarrow$} {$\searrow$}}

Third attempt: different shapes

A little reflection suggests that there is no need for
all eight ornaments to be the same size; all that is
required is for those symbols that will be aligned
together to have matching sizes in the appropriate
dimension. Thus, if we call the four edge symbols
t, b, l and r, and the four corner symbols tl, tr,
bl and br, then:

• tl, l, bl should have the same width;
• t, b should have the same width;
• tr, r, br should have the same width;
• tl, t, tr should have the same height;
• l, r should have the same height;
• bl, b, br should have the same height.

The only change required to the macro is to make
sure the appropriate symbols are used when it comes
to computing the number of symbols required:

\def\boxitC#1#2#3#4#5#6#7#8#9{{%

% contents TL T TR L R BL B BR

\setbox0=\hbox{#1}% the box contents

...

\count0 = \wd0 \advance\count0 by \wd2

\advance\count0 by -1 \divide\count0 by \wd2

\count1 = \ht0 \advance\count1 by \ht4

\advance\count1 by -1 \divide\count1 by \ht4

\setbox0=\hbox to \count0\wd2{%

\hfil\vbox to\count1\ht4{%

\vfil\box0\vfil}\hfil}%

...

}}

Now it is possible to dispense with the resizing; we
can write simply

\boxitC{\itshape

\begin{tabular}{c}

bring me my \\

arrows of desire

\end{tabular}}%

{$\searrow$}{$\downarrow$}{$\swarrow$}

{$\rightarrow$}{$\leftarrow$}{$\nearrow$}

{$\uparrow$}{$\nwarrow$}

to generate
↘↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↙→→→→→→→

bring me my
arrows of desire

←←←←←←←↗↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↖

Knotwork

Sadly, there is a shortage of good symbols for creat-
ing such ornaments; not many typographic elements
come in eight different orientations! However, there
is nothing to stop you designing your own symbols:



370 TUGboat, Volume 20 (1999), No. 4

CBBBBBBBBBDAAA
wreathe iron pokers
into true-love knots

AAA
EBBBBBBBBBF

This ornamental box uses a font of six different
knotwork components:

C D E F B A
(the top and bottom edges use the same symbol,
as do the left and right edges). The designs are
based on those in the book Celtic Knotwork Designs
by Sheila Sturrock (Guild of Master Craftsman
Publications, 1997).

� Jeremy Gibbons
Oxford University Computing

Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, UK
jeremy.gibbons@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/

oucl/people/jeremy.gibbons.

html


