
One-Document Scientific Publishing for Print and Web/CD

Peter Signell
Physics and Astronomy Department
Michigan State University
East Lansing, MI, 48824
signell@physnet.pa.msu.edu

One-content document, several auxilliaries

When a document must be published in more than
one version and must also undergo periodic revi-
sion, the use of a different stored manuscript for
each version may easily result in the versions get-
ting out of step with each other, so it is consid-
ered good practice to make arrangements to have
just one stored master version. This is especially
important if the different versions vary greatly in
the order in which the content elements are pre-
sented, as they are likely to do when one version
is for the print medium and another for the Web
or for CD-ROM. With all versions sharing the same
master content document, each version must have
its own auxiliary non-content documents specify-
ing the version’s unique architecture and formatting.
Then any content revisions are made only to the
master content document and any format revisions
for a particular version are made only to the docu-
ment which specifies the formatting of that partic-
ular version. This process is quite familiar to LATEX

document managers who often separate formatting
from content in order to maintain uniform format-
ting throughout a document, throughout a product
line, or across revisions. In LATEX, the formatting
information is usually placed in one or more auxil-
iary “style files”, some of which are shared among
different printed versions of the material or between
different documents, a kind of “inheritance.” In this
paper we discuss some experiences with extending
that publication model, of one master content doc-
ument and auxiliary architecture and content doc-
uments, to the case of simultaneous print and Web
publication. Along the way, we discuss the differ-
ences between the screen and print media and the
implications for the auxiliary files, new linking op-
portunities in the Web version, and ways to move
the content document toward compatibility with the
new Extensible Markup Language, XML.1

1 Commented links to documents on XML can be found
at www.sil.org/sgml/xml.html and there are answers to fre-
quently asked questions at www.ucc.ie/xml.

Overview of media differences

When a document is to be published both in print
and on the Web, the formatted print and Web ver-
sions are likely to take rather different forms. This
is because of the differing characteristics of the two
media. For our present purposes, there are four
main ways in which print presentation differs from
computer-screen presentation: (1) the print medium
has much higher resolution then the computer screen
so scientific text can be packed much more densely
in a print version; (2) the effective dimensions of
the computer user’s browser window can vary over a
wide range, even at the whim of the user, in contrast
to the totally controlled dimensions of book paper;
(3) the computer is able to instantly present hidden
material whenever the user asks to see it; and (4)
the computer can have virtually unlimited amounts
of material available for instant presentation.

Resolution-related differences

The limited resolution of the computer screen re-
quires an increase in font size, particularly for the
display of equations and math symbols, and this
makes screen real estate particularly valuable. For
example, one does not want to take up valuable
space with task bars, sticky pads, and icons. In the
computer-screen version, these functions can be pro-
vided through menus of choices that pop up when
the right mouse button is pressed on a PC or when
the shift key accompanies the mouse click on a Mac.

The fact that a very limited amount of material
can be on the screen at any one time means that a
figure should not float to the top or bottom of the
page, as in LATEX, but should instead be displayed
next to the first reference to it in the text. The
figure must also be available to be displayed at any
point where it is referenced, since the small amount
of material on the screen means that the figure is
unlikely to still be on the screen at the time the user
reads the reference. Also, because of the limited
resolution, the user must be able to click on any
figure to see an enlarged view that shows details
with clarity sufficient to satisfy the user. A similar

TEXNorthEast Conference, March 22 – 24, 1998 208

TUGboat, Volume 19 (1998), No. 2 209

kind of availability is necessary for equations and
definitions: they must be actually on display at the
first reference to each, and they must be available
for display by the user at all further references.

Dimensional differences

We know quite well the size of paper on which a text-
book will be printed, but we do not know the size of
a computer user’s browser window. Even if we know
the dimensions of a particular user’s screen, the user
may shrink or expand the browser window at will in
one or both dimensions. The user may increase the
font size because of poor eyesight or limited screen
capabilities. Any change in width or font size will
produce a change in the number of characters al-
lowed per line and so will require that the material
on the screen be instantly and transparently refor-
matted. Another effect of a user narrowing the effec-
tive width of the browser window is that it will cause
a figure caption to the right of a fixed-width narrow
figure to be partially “off the screen to the right” un-
less the caption alone is instantly and transparently
reformatted into lines of a narrower width along-
side the figure. If the window is made too narrow,
the caption must be seamlessly moved to a position
underneath the figure and reformatted for that posi-
tion. For equations, a good line-breaking algorithm
must be used to allow equation formatting and re-
formatting to make the equation fit the screen size
of the moment.2

Information-hiding differences

The computer has the unique ability to pop up in-
formation at the user’s discretion, and this affects
the placement of material in the flow of the docu-
ment. For example, in printed textbooks the answer
to a homework problem is never printed at the end
of the problem because it would then be too eas-
ily seen by a user working the problem. Instead,
in textbooks the printed answers to problems and
exercises are almost always collected at the ends of
the books. Other “optional” materials are collected
away from the points at which they will be needed
by some users but not needed by others. In the com-
puter version, each of these elements can be made to
pop up at the relevant point if the user so desires. In
our case, these optional pop-up elements consist of
specifically targeted help sequences and additional
skill-based instructional elements and practice prob-

2 See Michael Downes, Breaking Equations, TUGboat 18,
3, September 1997, pages 182-194. A new release of the soft-
ware is expected in early August, 1998 (private communica-
tion from M. Downes). We hope that this work, so important
for the Web, can eventually be made available for use in XML.

lems as well as the usual problem and exercise an-
swers. Thus the computer-screen and print versions
are very different in the flow and user-activated flow
of document elements. In addition, there are pro-
posals for “information that knows about me (my
needs and preferences)” and this would require a
multitude of possible paths through the kinds of in-
formation that may be available to construct a cus-
tom document. Finally, we note that a print version
is limited in the amount of material that can be in-
cluded because more information results in a higher
price and a heavier weight, and sufficient amounts
of different kinds of optional material can make the
user navigate what seems to be a gigantic maze. No
such problem occurs in the Web version.

Next year’s solution: XML

Both print and Web versions of books have recently
been produced from content-only documents, plus
version-specific non-content documents, using the
World Wide Web Consortium’s “Extensible Markup
Language,” universally called XML.3 However, very
few of XML’s eventual capabilities have been used
because parts of the XML specification suite are still
under development by working groups of the World
Wide Web Consortium (hereafter “the W3C”). The
basic specification for XML was “recommended” by
the W3C in February and full approval is expected in
the fall. The math markup language is in the “rec-
ommended” stage and may also be approved this fall
by the members of the W3C. The specification for
the XML formatting (“style”) language, XSL, may
emerge from the XSL working group this summer.
As for XML browsers, Microsoft’s Internet Explorer
4.0 already includes some XML tools and Netscape
Navigator is scheduled for significant XML compli-
ance in version 5.0. IBM has produced XML tools
and Sun has put its extensive Solaris documentation
into XML.

The power and relative simplicity of XML have
led to its endorsement by IBM, Netscape, Microsoft,
Sun, Adobe, and a host of other institutions and
individuals prominent in the information industry.
Developers are creating XML tools and XML work-
shops are being held around the country. It is ex-
pected that XML will be used instead of HTML for
many Web pages and will be used for many printed

3 A publishing house use of XML to produce both HTML

and RTF versions, the former for a Web version and the latter
for the commercial printed-book version, can be seen in some
detail at www.mcp.com/info/1-57521/1-57521-334-6. That
example is also interesting because it includes use of TEI,
the Text Encoding Initiative, and because it treats XML as
a special case of SGML, the Standard Generalized Markup
Language.

TEXNorthEast Conference, March 22 – 24, 1998

210 TUGboat, Volume 19 (1998), No. 2

publications. LATEX may turn out to be an appli-
cation of choice for printing XML documents, es-
pecially those involving math. The feeling of some
XML working groups and developers seems to be
that true XML Web browser and print applications,
including math, formatting, linking, data, pointer,
and document architecture, will gradually become
usable starting next spring.

Math in XML

The XML math markup language, called MathML,
has already been incorporated into several tools.4

Although MathML makes sense in terms of the am-
bitious goals of the MathML working group, it is
rather laborious to write and difficult to proof-read.
In an example from IBM,5 markup for the quadratic
root formula, LATEX takes one line while the Presen-
tation form of MathML takes 35 lines:

LaTeX: $$x=-b\pm\sqrt(b^2-4ac)/(2a)$$
MathML:

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>

<mrow>
<mo>-</mo>
<mo>b</mo>

</mrow>
<mo>±</mo>
<msqrt>

...(22 lines)...
</frac>

</mrow>

As a result of this complexity, it has been proposed
that LATEX or another math markup language might
be used in XML documents with “helper applica-
tions” converting it “on the fly” to MathML for
processing by the user’s XML browser. It is as-
sumed that LATEX is exactly equivalent to Presen-
tation MathML.6

4 A list of tools incorporating MathML is available at
http://www.w3.org/Math/.

5 Download techexplorer from www.software.

ibm.com/techexplorer Install it as a plug-in to
Netscape Navigator, then display, in the Navigator:
Netscape/Communicator/Program/Plugins/techexplorer/

Examples/MathML/mml002.html.
6 Another set of MathML markup, without any format-

ting, is called Content MathML. In contrast to Presentation
MathML, Content MathML is strictly generic (formatless)
markup. To see an example, display the file mml002.html

referenced in Footnote 5.

Meanwhile: LATEX and techexplorer

While waiting for XML to become usable for doc-
uments that contain math, we are using LATEX and
IBM’s techexplorer7 to produce Web and print ver-
sions of a physics textbook. The LATEX compiler
combines its own style files and the one master file to
produce the .dvi file for the printed version. tech-
explorer is a plug-in for current browsers that com-
bines its own “macro” style file with the one master
file, on the user’s machine and in real time, to pro-
duce the on-screen version. The LATEX compiler and
the techexplorer interpreter can work from the same
master file because techexplorer uses LATEX’s com-
mand structure and also because it recognizes many
LATEX commands. Thus many formatting macros
in the LATEX style file can be taken over directly to
techexplorer’s macros file. techexplorer simply ig-
nores the LATEX commands in the master file that
are not in its repertoire. In addition to the many
LATEX commands that it understands, techexplorer
has commands that are useful for Web browser dis-
play and which provide some of the capability ex-
pected in XML. While we are using techexplorer
and LATEX, we are also using a specific LATEX markup
scheme that is designed to capture the information
needed for a future conversion to XML. It is for-
tunate that one of XML’s strongest requirements is
also a requirement of LATEX; namely, that scopes be
nested (which makes possible the description of ele-
ments as distinct objects).

techexplorer’s new “user-embed” link

We make considerable use of techexplorer’s imple-
mentation of XML’s new “user-embed” link.8 The
techexplorer command is “\altLink” and it allows
us to specify two hot elements (elements that are
visually identifiable as clickable links) which alter-
nate as the user clicks on them. For example, the
default hot element can be the word “help” and the
alternate element can be a long sequence of help

7 See the techexplorer reference in Footnote 5.
8 XML specifies a suite of six pre-defined links and al-

lows for custom-designed links. The built-in types are the six
combinations produced by combining the “show” attributes
“auto” and “user” with the “actuate” attributes “replace,”
“new,” and “embed.” Here “auto” and “user” indicate who
controls activation of a link, while “replace,” “new,” and “em-
bed” indicate the action to be taken when a link is activated.
Whereas “replace” and “new” switch to a different flow of in-
formation, one in the current browser window and the other
in a new window, “embed” causes the link-targeted object
to be seamlessly incorporated into the current flow of infor-
mation at some designated spot just as though the targeted
element had always been there. Another part of the XML

specification says that the element to be embedded need only
be an identifiable element, not a complete file.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 211

that includes text, graphics, and interactive com-
puter programs. When the user clicks on the hot
word “help,” that word is instantly replaced by the
actual help sequence which is sometimes quite long.
The insertion is downward from the point of the de-
fault element, with the elements above the point of
insertion remaining fixed in position on the screen.
The actual help sequence, no matter how long, is
also visually identified as a hot element so the user
can click on it and cause it to disappear and be re-
placed by the first alternative, the single hot word
“help.”

Our use of user-embed links

We use techexplorer’s version of the user-embed link
to let the user bring in objects that in print would
only be referred to, not displayed, after their first
occurrence. For example, the first time Figure 6 is
referred to in a print version, it is displayed. There-
after, however, the print version will merely show
the words “. . . Figure 6 . . . ” and it is up to the
reader to turn back and find the appropriate page to
see the figure. Using the user-embed link, however,
the screen version has all references beyond the first
as hot elements that can bring in the actual figure,
complete with caption, and then take it out again,
all at the user’s discretion. Similarly, the displayed
figure can be clicked on to be exchanged with an en-
larged version for detailed examination. References
to previously-encountered equations and definitions
are also shown as user-embed links that will alter-
nate the reference to the object, usually hot words,
with the actual object. Finally, we use user-embed
links for objects that are not displayed at all un-
less or until the user wants to see them: answers to
problems, helpful hints at specific points in the dis-
cussion or in homework problems, additional prob-
lems to practice specific skills, tutorials that provide
additional instruction for students that need it, an-
swers to problems in the tutorials, and items in the
chapter summaries.

Separating form from content

The feedback we have received over the years from
students and instructors, along with insights from
research, have led to a never-ending stream of al-
terations of the contents of the book we have been
converting for print and Web. These continuous al-
terations have led us to the removal of all formatting
commands from the content files and the placing of
them in a separate style file, a procedure long advo-
cated by experts and which is advocated by virtually
all XML developers. One justification for this sepa-

ration becomes evident when even a small revision
upsets the formatting for the entire remainder of an
unseparated document. It is best to save time and
frustration by letting the the LATEX compiler handle
the reformatting using a style file. To make the deci-
sions involved, the LATEX compiler must be informed
of the type of each element in the content file. This
is accomplished by making each element be the ar-
gument of a LATEX command whose name labels the
type of the element. Thus, for example, the title of
a book could be the argument of a “\BookTitle”
command in the content file and this might be con-
verted to a “\textit” command in the style file. In
general, the style file should give LATEX all the infor-
mation it needs to make an appropriate formatting
decision for each type of element that occurs in the
book and for each type of formatting situation in
which LATEX might have to format that type of ele-
ment. The complete separation of the content from
the format instructions has the added benefit of en-
forcing 100% conformity with the publisher’s and
author’s desired format for each of the various types
of elements in the book. This enables the user to
immediately and reliably recognize the intent of an
element just from its appearance. It also allows the
author or publisher to easily change the format of
all members of a particular class of element.

Problems in separating the content

It is well known that one cannot completely separate
content from style within the confines of the cur-
rent LATEX compiler used for print versions of books,
but our experience is that such separation can eas-
ily be made complete for the screen version within
the confines of the current techexplorer. The reason
for this difference is mainly that the screen version
has no page ends (techexplorer ignores page-end
commands) whereas a number of page-end format-
ting “tweaks” must be put into the content file for
the print version. Even experts have this problem.
In The LATEX Companion, Goosens, Mittlebach, and
Samarin remark that they inserted 237 commands
in the book’s content files to over-rule formatting
decisions that were made by the LATEX compiler as
it followed the instructions the authors had placed
in the book’s style file.9 We hope that the table of
tweaks shown in that book can sometime be used
by a LATEX expert to give us some commands which
will cover the situations the authors (and we) have
encountered.

9 See The LATEX Companion, M. Goosens, F. Mittlebach,
and A. Samarin, Addison-Wesley, Reading, MA, 1994, second
page after page 528.

TEXNorthEast Conference, March 22 – 24, 1998

212 TUGboat, Volume 19 (1998), No. 2

Moving the markup toward XML

Eventually we will be able to encode our content
files in XML to produce both the print and screen
versions, and we are moving toward that capability
by capturing some of the necessary information in
our master content documents. To move our files in
that direction while retaining our LATEX and tech-
explorer capabilities, we followed these procedures:
(1) We removed all formatting instructions from the
content (“.tex”) files. (2) We made each content el-
ement’s type identifier be a “backslash” command
with braces around its argument. Here are some ex-
amples using names that seemed reasonable to us:

$. . . $ ⇒ \m{. . . }
%. . .⇒ \rem{. . . }
each paragraph⇒ \p{. . . }.

(3) We put, near the head of the style file, each
content type identifier in a single line with either
a simple format definition or the name of a more
complex formatting macro (the third case below):

\newcommand{\m}[1]{$#1$}
\newcommand{\BookTitle}[1]{\textit{#1}}
\newcommand{\Def}[2]{\DefF{#1}{#2}}.

(4) We put, near the head of the content file, defini-
tions of elements that may be used more than once
such as figures, definitions, and equations. Here is
an example of a definition which appears in a box
that is labeled “C-1” in the right margin of both the
print and screen versions:

\newcommand{\DefWrdC1}{mass}
\newcommand{\DefDefC1}{Mass is...};
Each figure contains a graphic and a caption.

The graphic part is an eps file for LaTeX and a gif
file for techexplorer. These graphics files are called
“external entities” in XML and they require special
markup in both LaTeX and techexplorer.

Markup of figures, without \ifthenelse

At the present time, techexplorer does not have the
\ifthenelse and \equal commands that come with
the LATEX IfThen package. This forces us to write
out figure references in messy detail.

Here is a fragment of the list of figure cap-
tions and figure graphics files that we put at the
head of the content document (with \nc indicating
\newcommand):
...
\nc{\figEbGrap...
\nc{\figEcCapt}{Fig. E-3. This fig...}
\nc{\figEcGrap}{m407gr19}
\nc{\figEdCapt...
...

This shows data for parts or all of figures 2, 3, and
4 in the document’s Section E. Numbers are not al-
lowed in LATEX command names so lower case letters
have been used instead: b in place of 2, etc.

Here is an XML equivalence for the figure graph-
ics command:
<!ENTITY figEcGrap SYSTEM "m407gr19.gif"

NDATA GIF>

where the first pair is the object data (type and
name), the second pair is entity-retrieval data (at-
tribute and value), and the third pair is application
data (type and application). Here “NDATA” indi-
cates “notation data.”

Here is the markup at the place the figure is
first mentioned in the document, the place where
the figure will naturally appear:
\Fg{\figEcCapt}{\figEcGrap}

Next we have the markup to be placed at suc-
ceeding references to the figure. During LATEX pro-
cessing for print, the third argument, the reference
to the figure, will simply be printed. During techex-
plorer processing for the Web, reference to the figure
will be a hot word whose selection will cause its re-
placement by the actual figure as a hot object (click
on the figure and it instantly goes back to being the
third-argument hot word):
\FgRef{\figEcCapt}{\figEcGrap}{Fig. E-3b.}

To finish the markup, here are the LATEX style
file definitions for the print version of the document,
with \nc again indicating \newcommand and with a
period on each side of the figure caption indicating
code that is unrelated to the issues being discussed:
\nc{\Fg}[2]{.#1.\epsfig{file=#2.eps}}
\nc{\FgRef}[3]{#3}

Finally, here are the techexplorer style file def-
initions for the Web/CD version of the document,
with more code being shown because it may be less
familiar:
\nc{\Fg}[2]{

\fcolorbox{black}{green}{
\begin{tabular}{l p{0cm}}
\fbox{\includegraphics{#2.gif}} & #1\\
\end{tabular}

}
}
\nc{\FgRef}[3]{\altLink{\Fg{#1}{#2}}{#3}}

Note the tabular attribute p{0cm} which tells tech-
explorer to format the figure caption using all of the
remaining horizontal space in the browser window
at the moment. Also note the \altLink command
that displays the third \FgRef argument, the figure
reference, as a hot word. Its selection by the user

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 213

will cause the reference to be replaced with the first
and second \FgRef arguments, the actual figure, as
a hot object. Subsequent selection of the figure will
cause it to change back to being just the reference.

Markup of figures, with \ifthenelse

If and when \ifthenelse and \equal are imple-
mented in techexplorer, the figure references can be
made simpler in two ways: (1) we can use the usual
LATEX simulation of associative arrays to identify a
figure by a simple ID; and (2) we can write the first-
and consecutive-figure references as one command,
branching inside the associated macro on whether
the hot-word argument is empty or not. Here is a
fragment of the set of figure data at the head of the
document, simulating an associative array:
\nc{\fig}[2]{
...
\ifthenelse...{E2}...
\ifthenelse
{\equal{#1}{E3}}
{\Fg{Fig. E-3...}{m407gr19}{#2}}{}

\ifthenelse...{E4}...
...

}

Here is the first text reference to the figure,
where the empty second argument indicates that the
figure is to appear here and there is to be no user
choice:
\fig{E3}{}

Finally, here is the subsequent reference which
will appear to the user as the hot word contained
in the second argument and whose activation by the
user will instantly replace the hot word with the ac-
tual figure as a hot object (click on the hot figure and
it instantly goes back to being the second-argument
hot word):
\figRef{E3}{Fig. E-3b.}

Dealing with our upgrade-process errors

During the rather lengthy upgrading toward XML,
our LATEXfiles were also undergoing continual con-
tent revision and had to be continuously available
for the usual LATEX printing. We found this to be
workable providing: (1) we first made any markup
change to one element and then checked that the
change had occurred properly before applying it to
all occurrences of the same type of element; (2) af-
ter each markup change to all elements of the same
type, we checked the changes in somewhat random
places through visual checking of appropriate .dvi
files; (3) we kept a log of the markup changes made
each day, recording them in a lab notebook; and (4)
we had our office server make backup copies of all
files in the middle of each night. The main use of the
“markup changes log” was in handling cases where
the markup changes we made were irreversible and
turned out to be erroneous. When that happened,
and it did happen, we could bring back the previous
day’s backup files and then repeat the good changes
noted in the log (we saved the code used for each
change). However, we did learn the hard way to
check that the correct backup tape was in the DAT

drive before we went home each night.

The software we used

For search and examination through the file system
we used the programmer’s editor called TextPad,10

and for making changes to all items having a com-
mon pattern of characters we used Perl.11 Our Perl
script used macros that find elements delineated by
braces that may themselves contain arbitrary num-
bers and levels of nested elements. We intend to
use Perl to convert from LATEX braces to XML angle
brackets when the proper time arrives.

10 See www.textpad.com.
11 See www.ActiveState.com.

TEXNorthEast Conference, March 22 – 24, 1998

