
TUGboat, Volume 18 (1997), No. 2 75

Hints and Tricks

`Hey| It Works! '

Jeremy Gibbons

[Editor's note: Welcome once again to \Hey | it

works!", a column devoted to (LA)TEX tips and tricks.
This was intended for the last (alas, never published)
issue of TTN , and Jeremy should not be held directly
responsible for it at this point in time. We hope to
include this column regularly in TUGboat.]

�� � ��

Jonathan Fine of Cambridge, UK wrote in response
to Allan Reese's article in TTN 4,2. Allan explained
why inserting \lowercase into an \equal test, as in

\renewcommand{\NL}[1]

{\def\thisletter{#1}%

\ifthenelse{\equal{%

\lowercase{\thisletter}}%

{\lowercase{\thatletter}}}%

{\\}%

{\\[\smallskipamount]%

\global\def\thatletter{#1}}%

#1}%

did not produce a case-insensitive string compari-
son|the \lowercase happens too soon, even with
judicious uses of \expandafter.

Jonathan observed that the problem can be
solved by applying the \lowercase around the def-
initions, rather than the uses, of \thisletter and
\thatletter:

\renewcommand{\NL}[1]

{\lowercase{\def\thisletter{#1}}%

\ifthenelse{\equal{\thisletter}%

{\thatletter}}%

{\\}%

{\\[\smallskipamount]%

\lowercase{\global\def\thatletter{#1}}}%

#1}%

We also have three new items this issue. The
�rst, is about typesetting long division problems;
Barbara Beeton submitted the idea and the crucial
part of its solution to me a couple of years ago,
and I've rewritten it in LATEX. I've also shown
Donald Arseneau's amazing macros for doing the
whole long division problem automatically, given
just the dividend and divisor. The second article,
by Christine Thiele, shows how to produce two small
separately-numbered �gures side by side; I used it
in my column in TTN 4,1. The �nal article, by
Dennis Kletzing, is a followup to his presentation at
the TUG Annual Meeting in Florida in July 1995;

he shows here how to typeset automatically many
short items of di�ering sizes in a grid layout. Enjoy!

�� � ��

Long division Barbara Beeton

American Mathematical Society

bnb@ams.org

Donald Arseneau

Tri-University Meson Facility

asnd@erich.triumf.ca

Barbara Beeton was asked by a secretary for help
with typesetting a long division problem, such as

13

949�
12345
117
64
52
125
117
8

Barbara solved the secretary's problem, and was
particularly proud of the use of the parenthesis. I've
taken her idea and rephrased it in terms of LATEX's
tabular environment (I'm afraid Barbara is a die-
hard plain TEXie!), which makes placing the digits
relatively straightforward.

The long division above was produced by

\newdimen\digitwidth

\settowidth\digitwidth{0}

\def~{\hspace{\digitwidth}}

\def\divrule#1#2{%

\noalign{\moveright#1\digitwidth%

\vbox{\hrule width#2\digitwidth}}}

13\,\begin{tabular}[b]{@{}r@{}}

949 \\ \hline

\big)\begin{tabular}[t]{@{}l@{}}

12345 \\

117 \\ \divrule{0}{4}

~~64 \\

~~52 \\ \divrule{2}{3}

~~125 \\

~~117 \\ \divrule{2}{3}

~~~~8

\end{tabular}

\end{tabular}

The macro \divrule#1#2 produces a rule the same
width as #2 digits, indented by the width of #1

digits. (In most fonts, all digits have the same
width.) Notice the \big) between the divisor and
the dividend, and also the use of ~ as an active
character, producing a space the size of a digit; this
should all be done within a group, in order that the
rede�nition of ~ is not global. Notice also the use of



76 TUGboat, Volume 18 (1997), No. 2

nested tabulars, one bottom-aligned and one top-
aligned, for placing the various parts correctly.

Of course, TEX is quite capable of doing long
division itself. Donald Arseneau has posted the
following macros on comp.text.tex:

\newcount\gpten % power-of-ten, tells which

% digit we're doing

\newcount\rtot

% running total -- remainder so far

\newcount\scratch

\def\longdiv#1#2{%

% long division: #1/#2; integers only

\vtop{\offinterlineskip

\setbox\strutbox\hbox{%

\vrule height 2.1ex depth .5ex width0ex}%

\def\showdig{$\underline{%

\the\scratch\strut}$\cr\the\rtot\strut\cr

\noalign{\kern-.2ex}}%

\global\rtot=#1\relax

\count0=\rtot\divide\count0by#2%

\edef\quotient{\the\count0}%

%

% make list macro out of digits in quotient:

\def\temp##1{\ifx##1\temp\else

\noexpand\dodig ##1%

\expandafter\temp\fi}%

\edef\routine{\expandafter%

\temp\quotient\temp}%

%

% process list to give power-of-ten:

\def\dodig##1{%

\global\multiply\gpten by10\relax}%

\global\gpten=1\relax\routine

% to display effect of one digit

% in quotient (zero ignored):

\def\dodig##1{%

\global\divide\gpten by10\relax

\scratch =\gpten

\multiply\scratch by##1\relax

\multiply\scratch by#2\relax

\global\advance\rtot-\scratch \relax

\ifnum\scratch>0 \showdig \fi

% must hide \cr in a macro to skip it

}%

\tabskip=0pt

\halign{\hfil##\cr % \halign for entire

% division problem

$\quotient$\strut\cr

#2$\,\overline{\vphantom{\big)}%

\smash{\raise3.5\fontdimen8%

\textfont3\hbox{$\big)$}}%

\mkern2mu \the\rtot}$%

\cr\noalign{\kern-.2ex}

\routine \cr

% do each digit in quotient

}}}

Given these macros, the long division

949

13
�
12345
11700

645
520

125
117

8
is produced simply by typing

\mbox{\longdiv{12345}{13}}.

�� � ��

Side-by-side �gures Christina Thiele

Ottawa, Canada

cthiele@ccs.carleton.ca

Something I recently had to do in LATEX was provide
two �gures side-by-side. There are actually two
types of situation: one is where the �gures are
related, and numbered 1a and 1b, for example; the
other is where they are numbered separately, as 1
and 2. The �rst instance, sub-�gures, can be han-
dled by getting subfigure.sty, by Steven Douglas
Cochran, from the nearest CTAN site. The second
instance can be done with regular LATEX commands.
I have to thank Barbara Beeton who forwarded
mail from comp.text.tex from January 1994 when
the subject arose there; also thanks to the ex-
changes posted by Andrew Justin Caird, Gabriel
Zachmann and Tim Murphy (who pointed the way
to subfigure.sty). Gabriel has recent informed
me that another, more elegant, solution would be to
use David Carlisle's tabularx.dtx, obtainable from
CTAN in tex-archive/macros/latex/packages/

tools/.
The bare-bones template I extracted from that

correspondence was as follows (the references were
to photos of Cree leggings, in an article on same):

\begin{figure}

\begin{minipage}{5cm}

\vspace{7cm}

\caption{Woman's leggings}

\end{minipage}

\hfill

\begin{minipage}{5cm}

\vspace{7cm}

\caption{Man's leggings}

\end{minipage}

\end{figure}

I sent this notion o� as a possible item for TTN .
But before I had a chance to get this simple version
written up, a new application was found, in Charles
Wells' piece on \Cross references in the bibliogra-
phy" (TTN 4,1:7). There, the code to produce the



TUGboat, Volume 18 (1997), No. 2 77

comparison between original and modi�ed BibTEX
put the minipages inside a tabular, making for an
easy way to do two-column work without doing line-
by-line two-columning. The minipage environment
might be worth having an extended tutorial on its
uses; I suspect there's a lot can be done with it.

�� � ��

Enumerated arrays Dennis Kletzing

Stetson University, Florida

kletzing@bliss.stetson.edu

Typesetting the solutions manual for a book fre-
quently involves creating an enumerated list involv-
ing many short answers. These answers are usually
enumerated across a row. The simple way to do
this is to start typing, with the result that the
enumeration counter is not aligned vertically from
one row to the next. Moreover, the ends of lines
frequently wrap to the next line and do not look
good. Surely there must be a better way to do this!

I started thinking abut this after I saw a mes-
sage posted on comp.text.tex from someone asking
what the secret was for writing macros. The person
responding mentioned several things and concluded
with the words \think boxes". If we \think boxes",
it is not di�cult to put together a macro that type-
sets enumerated arrays.

Basically, each item will be typeset in an \hbox
which consists of three boxes; one for the label, one
for the label separation, and one for the item itself.
We �rst choose a basic unit length \mitemwidth to
measure the length of items, a label width, and a
label separation width. Extend the \mitemwidth to
\mtotalwidth, which includes the label width and
label separation. Finally, create a box, \mitembox,
to hold the item to be typeset.

\newdimen\mitemwidth

\mitemwidth=.1\textwidth

\newdimen\mitemlabelwidth

\mitemlabelwidth=2em

\newdimen\mitemlabelsep

\mitemlabelsep=0.5em

\newcount\mitemtempcount

\newcounter{mitemcounter}

\newdimen\mtotalwidth

\mtotalwidth=\mitemwidth

\advance\mtotalwidth

by\mitemlabelwidth

\advance\mtotalwidth

by\mitemlabelsep

\newbox\mitembox

To ensure that each entry is typeset consis-
tently, we use this rule: measure the width of the
entry, including label and separation. Then typeset
it in a box whose width is the next largest multiple

of the unit length. Thus, if an entry requires 2.3
inches and the unit length is 1 inch, 3 unit lengths
will be required. Here is the macro:

\def\mitem#1{%

\refstepcounter{mitemcounter}%

\setbox\mitembox=\hbox{%

\hbox to \mitemlabelwidth{%

\hfil\arabic{mitemcounter}.}%

\hskip\mitemlabelsep\hbox{#1}%

\hskip0pt}%

\mitemtempcount=\wd\mitembox%

\advance\mitemtempcount

by\mtotalwidth%

\advance\mitemtempcount by -1%

\divide\mitemtempcount

by \mtotalwidth%

\setbox\mitembox=\hbox

to\mitemtempcount\mtotalwidth{%

\box\mitembox\hfill}%

\leavevmode\box\mitembox\hskip0pt}

[Notice the idiom (x + y � 1) � y for rounding-up
integer division of x by y, in terms of rounding-
down division �; also, the dimension \mtotalwidth
is being used as a \count. {jg]

For example:

1. x = 3 2. y = �2
3. x = 7 4. 8
5. circle 6. y = 2x2; parabola
7. 2x2 + y2 = 9; ellipse 8. circle
9. x2 + y2 = 9 10. x+ y = 3
11. line 12. x = 21 13. y = 5
14. z = �5 15. x = 7 16. y = �9
17. 2 18. 5 19. 6
20. �1 21. 9

This was set using the code

\begin{flushleft}

\mitem{$x=3$}

\mitem{$y=-2$}

\mitem{$x=7$}

\mitem{8}

\mitem{circle}

\mitem{$y=2x^2$; parabola}

\mitem{$2x^2+y^2=9$; ellipse}

\mitem{circle}

...

\end{flushleft}

In this example the \mitemwidth is set to
0.1\textwidth. The user should experiment with
di�erent values of \mitemwidth to see how the shape
of the array changes. This macro has the advantage
that if changes are made to the entries, all items
are renumbered and arranged appropriately. One
disadvantage is that if an entry takes more than a
single line, it will not wrap the line. Also, there are



78 TUGboat, Volume 18 (1997), No. 2

some situations when we wish to wrap several lines
within the entry. For these cases, there is a more
elaborate package called multienum.sty which sets
each item in a \parbox of width 1, 1=2, 1=3, or 1=4
of the \textwidth, wrapping the entry if necessary.
Interested readers may contact me for a copy of it.
Finally, I want to say a special word of thanks to
Jeremy Gibbons for his help in putting together this
version of the multienumerate macro.

� Jeremy Gibbons
School of Computing and

Mathematical Sciences
Oxford Brookes University
Gipsy Lane, Headington
Oxford, OX3 0BP UK
jgibbons@brookes.ac.uk


