
Background

Each of the authors has a good deal of practical
experience with Pascal compiler engineering. We
were each previously employed in senior technical
positions at Oregon Software, a small company spe-
cializing in high-performance compilers. (Curiously,
our times at Oregon Software did not overlap, and
we did not meet until later.)

TEX, of course, is a large computer program
written (by D. E. Knuth) in WEB, a structured
design language that can be processed to yield a
(more or less) standard Pascal program. The TEX
program is very stable and thoroughly debugged,
thanks to its author and the many users involved in
its development.

Motive

Blue Sky Research is the publisher of Textures, a
TEX-based desktop publishing system for the Apple
Macintosh family of computers. The interactive ori-
entation of the Macintosh compels its programmers
to be attentive to human-scale performance, and
we found the speed of TEX itself to be a limiting
factor in making Textures more interactive. (Also,
frankly, as compiler writers, we became unhappy
whenever we looked at the code produced by the
commercially-available compilers.) We, of course,
were aware of the traditional disadvantages of as-
sembly code, but thought that the extreme stability
of the TEX program made this a special case.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 269

A High-Performance TEX for the Motorola 68000 Processor Family

Steve Hampson and Barry Smith
Blue Sky Research

534 SW Third Avenue

Portland, OR 97204

Phone: (800) 622 – 8398

Internet: barry@reed.edu

Abstract

TEX is a large, computationally-intensive program that, thanks to its author, is
extremely stable and thoroughly debugged. We describe herein some aspects of
our recent work on an assembly language implementation of TEX for the Motorola
68000 processor family. Particular attention is given to memory reference and
procedure call templates, performance measurement tools and techniques, and
stupid compiler tricks. We also compare the results of our work with those of
more conventional methods.

Procedure

We did not propose to recode TEX directly in
assembly code, being aware of the programmer’s
maxim “80% of the time is spent in 20% of the
code.” (Actual measurements suggest that, for
TEX, 95% of the time is taken by less than 3% of
the instructions!) We instead proposed (and carried
out) a course of action roughly as follows:
(1) Produce a special-purpose Pascal compiler to

generate readable basic assembly code;
(2) tune the code generation of the compiler based

on extensive measurement and examination of
critical code sequences;

(3) when no further compiler improvements ap-
pear worthwhile, throw the compiler away and
continue with the compiler-generated assembly
code as a base;

(4) identify critical routines and segments and
rewrite “by hand”; and

(5) repeat step 4 until it no longer appears worth-
while.

(Step 3 was referred to within our team as “making
the jump to hyperspace.” Steps 4 – 5 are continuing
as of this writing.)

Examples

This portion of the paper assumes some familiarity
on the part of the reader with the flavor of assembly
language and the structure of TEX itself. For
readers not familiar with the Motorola 68000 family
architecture, it is by and large a 32-bit two-address
multiple-word instruction set with 8 general-purpose



arithmetic registers (D0 –D7) and 8 32-bit address
base registers (A0 –A7). A7 is conventionally used
as the stack pointer (SP).

Example 1: Access to the “mem” array. The
mem array is TEX’s principal memory structure,
and is referenced by many parts of the program.
Since Textures incorporates a “large” TEX, each
element of mem occupies 8 bytes; furthermore, since
in Textures the mem array can grow as needed, it
is referenced by a pointer that may change value
when the array changes size.

The straightforward 68000 instruction sequence
to access item “n” is as follows, assuming “n” is in
D0:

asl.l \#3,D0 ; shift N left 3 bits
move.l MEMPTR,A0 ; load address reg
move.l 0(A0,D0:L),D1 ; mem[N].rh -> D1

This is a relatively expensive sequence, con-
sidering its wide-spread use. Especially costly is
the instruction to load the base address of mem,
requiring 4 bytes for the instruction itself and also
a 4-byte memory fetch.

On the 68000, address register A6 is convention-
ally used as a procedure frame pointer, maintaining
the stack offset on procedure entry for reference
to parameters and local variables. (This simplifies
code generation within the procedure as the stack
grows and shrinks.) As it happened, the Oregon
Software Pascal – 2 compiler we used as a base for
our efforts was originally designed for the Digi-
tal PDP – 11 computer, which has no such frame
pointer. The compiler therefore already was capable
of computing stack offsets without the benefit of
the frame pointer, freeing register A6 for other uses.
We dedicated it to serve as the pointer to mem, and
modified the compiler to generate special code for
references to that variable.

We then went through the code to TEX, iden-
tifying each variable and expression that could
serve as a mem reference. The compiler pre-shifted
constants in mem indices, and we changed each
computed expression to pre-calculate the left shift
(equivalent to multiplying by 8). (Most pointers
are produced by arithmetic on pointers, so we
changed statements like “p:=p+1” to “p:=p+8”.)
The resulting code eliminated the need for the shift
instruction, so the code above simplifies to a single
instruction:

move.l 0(A6,D0:L),D1 ;mem[N].rh -> D1

(This was much easier to write about than to
actually perform; before we could be satisfied that
we had identified every reference to mem, we found
it necessary to create tools that would give us a

270 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Steve Hampson and Barry Smith

full trace of each mem reference to compare with a
standard trace.)

Example 2: instruction counting. We used sev-
eral TEX jobs as performance benchmarks. The
largest and most “life-like” of these was The
TEXbook, which produces 494 typeset pages. The
performance analyzer provided with the Macintosh
development system is an interrupt-based profiler
that samples the program counter every few mil-
liseconds and produces an execution time profile by
procedure blocks. While this was very indicative of
major program flow, we found it somewhat unstable
and too coarse for critical sections. We then built
an instruction-by-instruction counter that produced
an assembly listing with execution counts attached
to each instruction. Here is a partial summary of
counts for The TEXbook from April 20:

calls instructions %/total procedure
5 703 564 190 236 375 16.435 get next

1 152 982 983 13.217 main control
82 008 60 914 195 5.263 hpack
53 313 57 517 172 4.969 hlist out
229 313 55 271 629 4.775 try break
8 036 46 325 505 4.002 line break
This tool was somewhat expensive to use,

slowing execution by a factor of 150 or so, but
the information was happily consistent and pre-
cise. (Perhaps seductively so; we sometimes needed
to remind ourselves that instruction counts were
not directly related to processing time. In more
than one case we chose instruction sequences with
more instructions but faster execution, according to
processor timing calculations.)

Our measurement tools gave us more than
enough information to identify critical sequences for
hand work. (a target-rich environment for assembler
jockeys, so to speak.) Here is a similar summary
from May 23 (the calls are identical):

instructions %/total procedure
128 071 928 13.322 get next
109 146 891 11.353 main control
53 136 456 5.527 try break
51 951 382 5.404 hlist out
46 203 165 4.806 line break
43 949 702 4.572 hpack

Example 3: Procedure calling sequences. A
slightly different view of instruction count data
summarizes procedures in order of the number of
calls:



calls instructions inst/call procedure
5 703 564 190 236 375 33.4 get next
2 840 411 32 782 196 11.5 get xtoken
1 998 121 12 033 901 6.0 get avail
1 150 392 39 422 420 34.3 get node
1 150 334 14 954 342 13.0 free node
1 057 213 11 336 157 10.7 get token
Here, for example, we can see that we should

consider replacing high-frequency calls to “get avail”
with the equivalent in-line code. (In fact, Knuth
has already done this with a “fast get avail” WEB
macro; we carried this idea a little further in our
assembly code.)

More importantly, the sheer number of calls
to these routines focused our attention on calling
sequence overhead, both at the compiler template
level, and later on special-case sequences for certain
routines. Each single instruction eliminated from
the calling sequence for “get next” reduced the run-
time for The TEXbook by almost 1 second on our
Quadra test platform.

Perhaps the most interesting lesson from our
experiments was the (in-)validation of some of
the design concepts of the Pascal – 2 compiler. The
design team made some assumptions about program
structure that are not true for TEX, e.g., that
the procedure structure corresponded to significant
work elements of the problem. We found instead
that, in TEX, a typical procedure has a relatively
small critical path that corresponds to the large
majority of uses, and a much larger body of code for
special cases and error recovery. Unfortunately, the
compiler generated significant amounts of register
traffic on each entry to “optimize” register usage
over code that was never used!

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 271

TEX for the Motorola 68000

Conclusions

The overall performance of TEX has improved
by roughly a factor of three as of this writing,
compared to previous Macintosh implementations
via a standard (Apple) Pascal compiler. We believe
there are significant gains still to be realized,
although we are clearly seeing a diminishing return
on efforts. So far, the reliability and maintainability
are more than satisfactory; the assembly language
TEX described herein is shipping in our current
version of Textures, with no TEX problems reported
to date.

Thanks

We would like to express our thanks to Professor
Knuth for the TEX program itself, and especially
for the TRIP test program, which has allowed us to
easily locate bugs that would have been vanishingly
obscure in more “normal” uses of TEX.


