
Simultaneous Electronic and Paper Publication

John Lavagnino
Department of English and American Literature, Brandeis University, Waltham, MA 02254 USA

617-736-2080

Internet: lav@binah. cc . brandeis . edu

Abstract

Many current applications in computerized text processing

involve the creation of "multiform texts". Such a text is designed

for use in several forms: in both print and electronic form, for

example. This is a valuable goal for many kinds of text; one

example that may perhaps seem unlikely is the edition in

progress of Thomas Middleton's complete works. The central
question in creating a multiform text is the choice of a language

for the basic text files; SGML seems to be the best choice. It

has worked well on the Middleton project so far, and has worked

well together with m in solving some of the problems that
have arisen specific to this text.

Multiform Text

An underlying thread connects a number of different

projects in the computer processing of texts: the
idea of a "multiform text", a work that is meant

to be read and used in several different forms-

most characteristically, both electronic and printed

forms.

One of the most familiar instances of such a

text is the computer manual. If you're writing a

manual for a computer you're likely to be using a

computer to make it: and then why not use the

computer t o access it as well? That access doesn't
necessarily require giving any special thought to

making the electronic edition useful: many of us

have long depended on having a copy on disk of the

7&X source for The m b o o k A text editor is all
you need t o work with it.

But one does not read m source very happily:

this system is fine if you want to look at a macro

definition, but it's unsatisfactory if you're interested
in what an example produces on the printed page.

More interesting are those systems that attempt to

provide both print and electronic versions that are

equally usable. On-line help systems for computers

often work from a textual base that's adapted

from, or also issued as, print manuals: both
usually contain much the same information, and

the attraction of writing the documentation once,

not twice, is obvious. The UNIX man command is
one familiar example: it draws on text encoded in

the t r o f f typesetting language, and formats that
text for display either on the user's terminal or

on a printer, so that when you ask for help on a

command, you get the same text that's presented

in the printed manual.

This system is possible because the documen-

tation is encoded in a way that doesn't make it

impossible to print on a typewriter-like device in-

stead of on a real typesetter. The on-line access,

however, gives you nothing more than page images;
these provide as much information as the printed

manual, but they also provide no more than that.

In contrast, the programs distributed by the Free

Software Foundation use a more sophisticated docu-

mentation system that takes better advantage of the

computer's powers for structuring text in ways not

available in print. The Texinfo system not only uses
a descriptive markup (based on w) that encodes

the structure of the text and lets macros decide how

to present the information; it also includes encoding

for cross-references that allow a user who's got the

GNU Emacs editor to more effectively find informa-
tion in the manual and move to related topics in it

(see Stallman and Chassell).

Such a system combines the advantages of print

and electronic editions. The print user can still read

in bed, write on the copy, suffer less eyestrain,

and use the document when the computer is down;

the electronic user can search for a topic or phrase

much faster, follow connections that may not be

represented in the sequential text of the printed

manual. and get assistance with a program from

within that program. The best use of the system

seems to come not from using one or the other form

exclusively, but from switching back and forth,

TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

John Lavagnino

using the form which is best for addressing each
momentary need.

That sort of combined publication needn't be

limited to computer manuals. The advantages of
multiform text are there for all sorts of works.

The Oxford Middleton

My own interest in the multiform text comes out

of my work as one editor of an edition of the

complete works of Thomas Middleton (1580- 1627),

the English Renaissance playwright. This edition is

being prepared by an international team of editors
for publication by Oxford University Press in 1994.

It will include the texts of all Middleton's works-

above all, his twenty-seven extant plays, but also

numerous masques, entertainments, poems, and
prose works; and it will provide introductions and

very detailed notes to all these works. This is the

first complete edition of Middleton's works in over

a century, and we hope that it will not only collect
all the accumulated scholarship on Middleton, but

also establish his importance as a writer.
Such a complex work is usually quite expensive

to set in type, so that the advantages to us of

using TEX to do the typesetting ourselves are

clear. The advantages of creating a multiform text

(instead of concerning ourselves solely with entering
the right 'I)$ codes to print the work) may be

less immediately apparent. Yet a multiform text
is of value both for us, during our preparation

of the work, and for other readers and scholars

after its publication. Editors and scholars have

long depended on concordances to help them in

understanding the characteristics of an author's

style and thematic concerns; the electronic text

gives us, in effect, such a concordance to the text as

we prepare it, rather than long after it's published.

Providing an electronic text also makes possible a
later conversion of the work into a hypertext that

can allow readers quick access to the various sorts
of notes to the work.

The creation of a multiform text is not an

experimental approach, but instead one that keeps

the labor for everyone to a minimum and creates

the most valuable print and electronic editions. In

the following discussion of the salient issues in this

case, 1'11 mention these work requirements as they
come up.

The Choice of a Language

Most of t he important questions about how to

create a multiform text are related to the choice of

a "markup language" -the language in which the
text and its structure are specified. The basic idea

is to choose one form for the text from which all

other forms, electronic and printed, will be derived.

The markup language for this basic form should

make the derivation of other forms work easily and
well.

The UNIX man command, and the GNU Texinfo

system. both use typesetting languages with macro
capabilities- rn itself, in the latter case. And

that choice might seem to make sense in the general

case: after all, one thing we want to make is a
printed text created by w, and so using TEX as

our markup language seems to automatically solve
the problem of creating one of our final forms. But it

isn't a helpful choice when it comes to the electronic

side: TF,X is not especially easy to translate into

other markup languages. The nature of its macro

definition facilities means that a program needs to

know rather a lot of what TjjX knows if it's to be
able to make the conversion. Consider the rules

in for determining when a macro name has

ended: according to Knuth [page 471, these require
that we know the difference between letters and

other categories of characters-a distinction that

can be changed by a T)$X input file. Argument

delimitation is still more complicated [Knuth, pages

203-2041. (I am assuming here that the most

desirable approach is to transform the basic form

directly into other electronic forms. Carr and

Part1 have discussed separately approaches based

on taking dv i output and converting it to other

electronic forms, approaches that make things still

more difficult .)
For the Middleton edition, we have chosen

SGML, and use 7JjX only for the typesetting, not

for our text representation. (See Laan for an
introduction to SGML.) SGML is, first of all, rather
easy to convert to other forms: the names of

"tags" and "entities" in SGML, two different sorts

of commands that are similar to different aspects
of rn macros, are in the normal usage terminated

in an unvarying way-by '>' for tags, and ';' for

entities. Converting our text from SGML to I$$

seems to require nothing more complicated than

global substitutions, and a few simple TE,X macros
to deal with the product.

A more important reason for choosing SGML

lies in another facility it offers. It is intended not

only to handle the electronic representation of a

document's structure, but to allow the specification

of rules governing that structure, and verification of

a document's conformance to that structure. TEX
checks only that you aren't transgressing the rules

402 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Simultaneous Electronic and Paper Publication

of its input syntax; it has no facility for ensuring

conformance to any specifications narrower than

those in the The W b o o k . One can build such

specifications into any macro set, to some extent:

IPm provides an example, in its checks on the

proper nesting of \begin and \end commands

(among other things). IPm still doesn't check
everything, and its specifications are those of the

whole macro set, not a user's subset.

This question of verification matters for any
kind of text, but it's of particular importance with

the multiform text. It's necessary with such a text

to keep close tabs on what commands are used:

you want t o ensure that you don't wind up with

something that can be represented in one medium
but not the other. We're familiar with struggles to

get a page printed just right; but there's another

level to the problem in this perspective, that of

getting it "just right'' in more than one medium.

SGML helps prevent surprises in this realm.

The use of SGML's facilities does require some
extra work to formulate the specifications for the

text's structure, but some consideration of those

specifications has usually been necessary with mul-

tiform texts; the advantage of SGML is that it can
help to enforce those specifications.

SGML is also more securely oriented than any

typesetting language towards encoding the structure

and meaning of text elements, and not the details

of how they're to be printed. The importance of an

encoding that is focused on structure and meaning

has already been argued at length (see Coombs

et al. for a theoretical presentation, and Lafrenz
for a publisher's agreement with it on practical

grounds). Greater abstraction will also help us

with uses we've never anticipated (but which may

suddenly be of importance when our publication

date in 1994 rolls around): our ability to generate

new forms of our text will be enhanced if we have
precise specifications of what's going on in our text.

Finally, for our particular project, there is

the advantage that the international Text En-
coding Initiative is currently developing guidelines

based on SGML for tagging electronic texts, with

particular attention to the needs of scholars (see
Sperberg-McQueen and Burnard for a draft of these

guidelines). We want our text to get used and
studied, and adhering to standards is a good way of

doing that.

Most people get the impression that SGML is
not good to use for data entry, because its markup

appears to b e very bulky. This is only true when no

use is made of the extensive provisions SGML makes

for minimizing the markup; with proper use of these

features, SGML requires no more typing than 7JjX

does. But we began our project without any SGML

tools, and so we handle the data entry in another

way. Our approach has been to devise a very terse

markup that's used solely for data entry, adapted
very narrowly to the kinds of texts we're encoding;

we convert this immediately to SGML. and perform

all further processing on the SGML files. The

creation of the programs to do this conversion has

been one of the principal tasks involved in setting up

this mode of working-though it has hardly been

an onerous one. If we had obtained appropriate
SGML tools at the beginning of our work, even this

task would have been unnecessary.

Referring to the Printed Text

The careful choice of a markup language should

make it possible to contain the problems that come

from our need to do a great deal of computer

processing of our text: it should make the necessary

transformations easy, and ensure that we aren't

entering textual elements that can't be processed

within both realms.

But there is another layer of problems that can
arise. What would happen if we needed to include

information in an electronic text about the details

of how the printed text looked? That would mean
that the printed text would not just be a spinoff of

the electronic text, but that we'd need to extract
information from our printed text -or from the d v i

file - and fold it back into the electronic version; it
could be a difficult task.

The conventional index is a good example of
this: the text of an index is an analysis of the book

in which it appears, and it's dependent in a very

sensitive way upon how the page makeup came out.

Of course, we know how to handle index-making

with m. Its \write command is designed to

facilitate capturing information for an index or table

of contents that needs to know about page numbers.

In other multiform texts it's been common to use
references not to page numbers but to important

structural divisions, which don't depend on the page

makeup: the UNIX documentation that's used by

the man command is broken up into small chapters,

rarely more than a few pages long, one chapter for
each command.

The particular traditions of publishing in liter-
ary studies pose a problem for us with Middleton.

One demand that scholars make and are not going

to give up is for a very precise system for referring

to particular lines in the text, a system traditionally

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

John Lavagnino

implemented. in fact, with line numbering. Mid-
dleton's plays are typically written in a mixture of

prose and verse, often changing within a speech.

Prose is traditionally numbered using physical line

numbers: that is, each actual line of type is counted
as a line. Verse is numbered using logical or struc-

tural line numbers: a line of verse may take more

than one line of type to print, but it's still counted

as only one line in this numbering scheme. On top

of this, stage directions are handled in a different
way: whenever a stage direction appears that's not

on the same line as spoken text, it's given a physical

line number in a decimal numbering annexed to the

previous speech's line number: 18.1, 18.2, etc. The

stage directions that appear at the opening of a

scene are numbered 0.1, 0.2, etc.

The force of tradition makes it impossible to
use a different system (and it seems difficult to

come up with another that would be as precise and

as easy to use for readers of the printed text). We

can print such line numbers readily enough, using

the EDMAC macros (see Lavagnino and Wujastyk).
EDMAC can also create footnotes and endnotes

that use such line numbers in references, but we

also need to get them back into our SGML text:

that is, t o mark in the SGML text the point at
which each line begins. The reason is that users of

the electronic version, as well as users of the paper

version, need to be able to look things up using

these line references, and to find the line address for

a passage so that they can tell others where they're
looking.

This is a problem because the line numbers

that we ultimately want to fold back into our base

text are all generated in the course of typesetting.

and actually it's not an easy matter to find out
what they are and get them back into our SGML

text. Consequently, there's a need for software that

can take information out of our typesetter file - out

of a file that is usually deliberately made to focus on

niggling presentational details and tell us nothing
about structure- and interpret it for incorporation

into the SGML. It's a striking instance of how the

printed page is not merely an end product that

leads no further, at least not within the electronic
world.

I said that one reason behind our use of SGML

was to stress the representation of meaning rather

than structure in our text. But the reference-

system problem leads to a curious inversion of

this situation: if we want a print-based reference

system, we must process the output from our text

formatter - output which consists of text that's

been converted to a format that tells us as little

as possible about meaning, and far too much about

appearance.
For ordinary prose this isn't really a huge

problem. In dramatic texts, line numbering is com-

plicated, being partly logical and partly physical.

It's quite difficult for a program to determine the

numbers by just looking at the type on the final

page, unless every single line is numbered. It can
be done, but at the expense of writing a program

that's highly dependent on the details of how your

pages are laid out, since a lot of the clues that we

as readers depend on to figure out whether some-

thing is prose or verse or whatever have to do with
indentations, details of spacing, and font selection.

Our approach to this problem puts all the

burden of assigning line numbers to blocks of text on

TEX itself. Rather than try and write software that

guesses the line numbers, we have 7&X itself issue

\ spec ia l commands at the start and end of every
line of text: to specify the line number, and to mark

that text as a part that is numbered (since every

page includes headings. marginal line numbers, and

other text that is part of the presentation of the

text, not the text itself). This much is a simple
extension of the EDMAC macros that generate the

line numbers: those macros already add each line of

text to the output page separately, so inserting the
\ spec ia l commands that enclose each line of text

is straightforward.

The bigger task is interpreting the resulting dvi

file: we need to convert it into something that's close

enough to our original SGML file that we can match
up the texts and see where to put the line numbers.

This is by far the most substantial programming

task that the production of the Middleton edition

has required so far, and I don't expect that anything

to come will prove more difficult. The problem,

however, would be more difficult with any typesetter
other than T@. Not only does it have the unusual,

but very useful, \ spec ia l mechanism; it also comes

with its binary-file formats documented in a very

thorough manner, and with ancillary programs that
already demonstrate how to read things like dvi

files. Indeed, the dvitype program already does

a great deal of the task for us: our preliminary

version of this software simply starts from dvitype

out,put, not from the dvi file itself.

Although this is a thorny problem, it is one

whose solution is made much simpler by certain

well-known (but perhaps insufficiently-appreciated)

merits of w: its extensibility, its excellent docu-

mentation on its internal workings and file formats,

and its wealth of supporting programs, all available

in source code.

404 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Simultaneous Electronic and Paper Publication

Conclusion

Many people who prepare texts on computers are

already finding themselves drawn to the creation
of multiform texts. In this account I've tried

to identify the general questions that should be
considered in doing this; but it's probable that
others will also run into problems specific to the

kind of text they're working with, as we have with

reference systems in our work. The use of flexible

tools also makes the successful resolution of these
problems easier.

Bibliography

Bell Telephone Laboratories. Unix Time-sharing

System: Unix Programmer's Manual. Seventh edi-

tion. Murray Hill, New Jersey, January, 1979.
Carr, L., S. Rahtz, and W. Hall. "Experiments in

m and HyperActivity." TUGboat 12(1), pages
13-20, 1991.

Coombs, James H., Allen H. Renear, and Steven

J. DeRose. "Markup Systems and the Future of

Scholarly Text Processing." Communications of

the ACM 30(11), pages 933 - 947, 1987.

Knuth, Donald E. The m b o o k . Reading, Mass.:

Addison-Wesley, 1984.
Laan, C. G. van der. "SGML (, 7$J and . . .)."

TUGboat 12(1), pages 90- 104, 1991.
Lafrenz, Mimi L. "Textbook Publishing- 1990 and

Beyond." TUGboat 11(3), pages 413 - 416, 1990.
Lavagnino, John, and Dominik Wujastyk. "An

Overview of EDMAC: A p la in 7$J Format for

Critical Editions." TUGboat 11(4), pages 623 -

643, 1990.

Partl, Hubert. "Producing On-Line Information
Files with I4m." TUGboat 10(2), pages 241-

244, 1989.

Sperberg-McQueen, C. M., and Lou Burnard,

eds. Text Encoding Initiative: Guidelines For the

Encoding and Interchange of Machine-Readable

Texts. July 1990.

Stallman, Richard M., and Robert J . Chassell.

Texinfo: The GNU Documentation Format. Cam-

bridge, Mass.: F'ree Software Foundation, 1988.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

